Math, asked by Janani7305, 9 months ago

Find the quadratic polynomial whose zeros are 1 and -3. Verify the relation between the coefficients and the zeroes off the polynomial. Plz do answer a correct and appropriate answer...

Answers

Answered by amitkumar44481
32

SolutioN :

Let,

  • Zero be α and β.
  • α = 1.
  • β = - 3.

✎ Sum of Zeros.

→ α + β = 1 + ( - 3 )

→ α + β = 1 - 3.

→α + β = - 2.

\rule{90}1

✎ Product Of Zero.

→ α * β = 1 * ( - 3 )

→ α * β = - 3.

\rule{90}1

Now,

→ K [ x² - Sx + P ]

Where as,

  • K Constant term.
  • S Sum of Zero.
  • P Product of Zero.

→ K [ x² - ( -2 )x + ( -3 ) ]

→ K [ x² + 2x - 3 ]

\rule{90}1

» Let's Verify relations between Zero and coefficient.

We have, Polynomial.

→ x² + 2x - 3.

☛ Compare With General Expression.

ax² + bx + c.

Where as,

  • a = 1.
  • b = 2.
  • c = - 3.

✎ Sum of Zeros.

→ α + β = - b / a

→ 1 + ( -3 ) = - 2 / 1

→ - 2 = - 2.

\rule{90}1

✎ Product Of Zero.

→ α * β = c / a.

→ 1 * - 3 = - 3.

→ - 3 = - 3.

Hence Verify.


Vamprixussa: Excellent !
Answered by Anonymous
54

Answer:

\underline{\bigstar\:\textsf{Required Quadratic Polynomial :}}

:\implies\sf p(x)=(x-1)(x-(-\:3))\\\\\\:\implies\sf p(x)=(x-1)(x+3)\\\\\\:\implies\sf p(x)=x(x+3)-1(x+3)\\\\\\:\implies\sf p(x)=x^2+3x-x-3\\\\\\:\implies\sf p(x)=x^2+2x-3

⠀⠀⠀\rule{160}{1.5}

\boxed{\begin{minipage}{5.5 cm} {$\bigstar\: \textsf{For a Quadratic Polynomial :}}\\\\ {\qquad\sf p(x) = ax$^\sf2$ \sf + bx + c}\\\sf with zeroes \alpha\:\sf and\:\beta \\\\\\ {\textcircled{\footnotesize1}} \:\:\alpha +\beta= \dfrac{ - \:b}{a}\:\:\bigg\lgroup\bf Sum\:of\:Zeroes\bigg\rgroup \\\\\\{\textcircled{\footnotesize2}} \: \:\alpha  \beta= \sf\dfrac{c}{a}\:\:\bigg\lgroup\bf Product\:of\:Zeroes\bigg\rgroup\end{minipage}}

\underline{\textsf{Relation b/w coefficients \& zeroes :}}

{\qquad\maltese\:\:\textsf{Sum of Zeroes :}} \\\\\dashrightarrow\sf\:\:\alpha +\beta= \dfrac{ - \:b}{a}\\\\\\\dashrightarrow\sf\:\:1+(-\:3)=\dfrac{-\:2}{1}\\\\\\\dashrightarrow\:\:\underline{\boxed{\sf-\:2=-\:2}}\\\\\\{\qquad\maltese\:\:\textsf{Product of Zeroes :}}\\\\\dashrightarrow\sf\:\:\alpha\beta=\dfrac{c}{a}\\\\\\\dashrightarrow\sf\:\:1-\:3=\dfrac{-\:3}{1}\\\\\\\dashrightarrow\:\:\underline{\boxed{\sf -\:3=-\:3}}


Vamprixussa: Excellent !
Similar questions