Math, asked by agandlaswapna, 9 months ago

Find the quadratic polynomial whose zeros are 2/3 and -1/4. Verify the relation between the coefficients and the zeros of the polynomial.

Answers

Answered by Anonymous
5

\bold\red{\underline{\underline{Answer:}}}

\bold\green{\underline{\underline{Solution}}}

\bold{Zeroes \ of  \ polynomial \ are \frac{2}{3} \ and \frac{-1}{4}}...Given

\bold{Let \alpha \ be \frac{2}{3} \ and \beta \ be \frac{-1}{4}}

\bold{\alpha+\beta=\frac{2}{3}+\frac{-1}{4}}

\bold{\alpha+\beta=\frac{5}{12}}

\bold{\alpha×\beta=\frac{2}{3}× \frac{-1}{4}}

\bold{\alpha×\beta=\frac{-2}{12}}

Quadratic polynomial is

\bold{x^{2}-(\alpha+\beta)x+(\alpha×\beta)}

\bold{x^{2}- \frac{5x}{12}- \frac{2}{12}}

Verification of coefficients:-

In the above polynomial

a=1,b=\bold{\frac{-5}{12}},c=\bold{\frac{-2}{12}}

\bold{\alpha+\beta=\frac{-b}{a}}

We know,\bold{\alpha+\beta=\frac{5}{12}}

Also

\bold{\frac{-b}{a}=\frac{5}{12}}

And

\bold{\alpha×\beta=\frac{c}{a}}

We know,\bold{\alpha×\beta=\frac{-2}{12}}

Also

\bold{\frac{c}{a}=\frac{-2}{12}}

Therefore required quadractic polynomial is

\bold{x^{2}- \frac{5x}{12}- \frac{2}{12}}.

Similar questions