Math, asked by dileeprent, 10 months ago

find the quadratic polynomial whose zeros are 2-√3 and -√3/2​

Answers

Answered by anantrajusharma
2

Answer:

Polynomial = x²-2+√3 - √3/2

Step-by-step explanation:

sum of zeros 2-√3

product of zeros = -√3/2

polynomial = x²- ( sum of zeros )x + (product of

zeros)

Polynomial = x²-2+√3 - √3/2

JAI SHREE KRISHNA

Answered by raushan6198
0

Step-by-step explanation:

 \alpha  = 2 -  \sqrt{3}  \\  \beta  =  \frac{ -  \sqrt{3} }{2}  \\ sum \: of \: zeros \:  ( \alpha  +  \beta )= 2 -  \sqrt{3}  + ( -  \frac{ \sqrt{3} }{2} ) \\  \:  \:  \:  =  \frac{2 -  \sqrt{3} }{1}  -  \frac{ \sqrt{3} }{2}  \\  \:  \:  \:   =  \frac{4 - 2 \sqrt{3} -  \sqrt{3}  }{2}  \\  =  \frac{4 - 3 \sqrt{3} }{2}  \\  \\  \\ product \: of \: zeros \:  \alpha  \beta  = (2 -  \sqrt{3} ) \times ( -  \frac{ \sqrt{3} }{2} ) \\  =   \frac{ - 2 \sqrt{3} + 3 }{2}  \\  =  \frac{3 - 2 \sqrt{3} }{2}  \\  \\  {x}^{2}  - ( \alpha  +  \beta )x +  \alpha  \beta  = 0 \\  =  >  {x}^{2}  -  \frac{4 - 3 \sqrt{3} }{2} x \:  +  \frac{3 - 2 \sqrt{2} }{2}  = 0 \: ans

Similar questions