Math, asked by neelchhabhaiya06, 8 hours ago

Find the quadratic polynomial whose zeros are 2 and -6 (a) x2 + 4x + 12 (b) x2 – 4x – 12 (c) x2 + 4x – 12 (d) x2 – 4x + 12​

Answers

Answered by ugzbrainlyin
0

Answer:

a. x2+4x+12

b. x2-4x-12

c. x2+4x-12

d. x2-4x+12

If α, β, are the zeroes of the polynomial p(x) such that α+β+γ=3, αβ+βγ+γα=10, αβγ=-24, then px=?

a. x3+3x2-10x+24

b. x3-3x2+10x+24

c. x3-3x2-10x-24

d. x3+3x2+10x-24

Answered by Yoursenorita
2

ANSWER:

  • Option C

EXPLANATION:

  • Option 'a'

 \\  \\  =  {x}^{2}  + 4x + 12 \\  =  {x}^{2} + 6x - 2x + 12   \\  \\  \\ quadratic \:  \: equation \: \:is \:  \:  not \:  \: possible  \\  \\  \\  \\

  • Option 'b'

 \\  \\  \\ =   {x}^{2}  - 4x - 12 \\ =  {x}^{2}   - 6x + 2x - 12 \\  = x(x - 6)2(x - 6) \\x  =  - 2 \:  \: and \:  \: 6(not \:  \: equal \:  \: to \:  \: question) \\  \\  \\  \\

  • Option 'c'

 \\  \\  \\  = {x}^{2}   + 4x - 12 \\  =  {x}^{2}  + 6x - 2x - 12 \\  = x(x + 6) - 2(x + 6) \\ (x - 2)(x + 6) \\ x =   2 \:  \: and \:  \:  - 6 \\  \\  \\  \\  \\

CORRECT OPTION IS HENCE 'C'

Attachments:
Similar questions