Math, asked by Parvani7068, 1 year ago

Find the quadratic polynomial whose zeros are 3, - 2,the graph of which passes through (0,6)

Answers

Answered by njathin24
6

Answer:

Step-by-step explanation:

Attachments:
Answered by dheerajk1912
2

Answer: The quadratic polynomial is \mathbf{-x^{2}+x+6}

Step-by-step explanation:

1. Let quadratic polynomial is

  \mathbf{y= ax^{2}+bx+c}      ...1)

2. Since quadratic polynomial have zeros 3 and -2. It means

   At x=3 , y=0       ...2)

   and also

  At  x= -2 , y=0       ...3)

3. It is also given that point (0,6) lie on curve. It means

   At x=0 , y =6      ...4)

4. Now from equation 1) and equation 4), we get

   \mathbf{y= ax^{2}+bx+c}

   \mathbf{6= a(0)^{2}+b\times 0+c}

 

   \mathbf{6= 0+0+c}

   So

   c=6

5. Now equation 1) can be written as

   \mathbf{y= ax^{2}+bx+c}

   \mathbf{y= ax^{2}+bx+6}        ...5)

6. Now from equation 2) and equation 5)

   \mathbf{y= ax^{2}+bx+6}

   \mathbf{0= a(3)^{2}+b\times 3+6}

   \mathbf{0= 9a+3b+6}

   \mathbf{9a+3b=-6}

   This can be written as

   \mathbf{3a+b=-2}        ...6)

7. Now from equation 3) and equation 5)

   \mathbf{y= ax^{2}+bx+6}

   \mathbf{0= a(-2)^{2}+b\times (-2)+6}

   \mathbf{0= 4a-2b+6}

   \mathbf{4a-2b=-6}

   This can be written as

   \mathbf{2a-b=-3}       ...7)

8. On adding equation 6) and equation 7)

   \mathbf{5a=-5}

   \mathbf{a=-1}        ...8)

9. Now from equation 8) and equation 7)

   \mathbf{2a-b=-3}

   \mathbf{2(-1)-b=-3}

   \mathbf{-2-b=-3}

  So

   \mathbf{b=1}         ...9)

10. Now from equation 9), equation 8) and equation 5)

    \mathbf{y= ax^{2}+bx+6}

    \mathbf{y= -x^{2}+x+6}     ...10)

   Equation 10) is required quadratic polynomial.

Similar questions