Find the quadratic polynomial whose zeros are 3+√5/2 and 3-√5/2
Answers
Answered by
0
Answer:
Given,
(3+√5) and (3-√5) are the zeros of the polynomial.
To find the quadratic polynomial we use :-
\boxed{k[ {x}^{2} - ( \alpha + \beta )x + \alpha \beta]}
k[x
2
−(α+β)x+αβ]
Let \: \alpha = (3 + \sqrt{5}) , \beta = (3 - \sqrt{5)}Letα=(3+
5
),β=(3−
5)
Sum of the zeros = α+β
= (3+√5)+(3-√5)
= 3+√5+3-√5
= 6
Therefore sum of the zeros (α+β) = 6
Product of the zeros = αβ
= (3+√5)(3-√5)
= 4
Therefore product of the zeros (αβ) = 4
Now substitute the values to find the zeros of the polynomial.
{k[ {x}^{2} - ( \alpha + \beta )x + \alpha \beta]}k[x
2
−(α+β)x+αβ]
{=k[ {x}^{2} - (6)x + 4]}=k[x
2
−(6)x+4]
{={x}^{2} - 6x + 4}=x
2
−6x+4
Therefore the quadratic polynomial is :-
{{x}^{2} - 6x + 4}x
2
−6x+4
Similar questions