Math, asked by sudarshsunil, 1 year ago

Find the quadratic polynomial whose zeros are 3 minus root 3 by 5 and 3 + root 3 by 5

Answers

Answered by hukam0685
47

  \alpha  = \frac{3 -  \sqrt{3} }{5}  \\  \beta  =  \frac{3 +  \sqrt{3} }{5}  \\  \alpha  +  \beta  =  \frac{3 -  \sqrt{3} }{5}  +  \frac{3 +  \sqrt{3} }{5}  \\  \alpha  +  \beta  =  \frac{6}{5}  \\  \alpha  \beta  = ( \frac{3 -  \sqrt{3} }{5} )( \frac{3 +  \sqrt{3} }{5} ) \\  \alpha  \beta  =  \frac{9 - 3}{25}  =  \frac{6}{25}  \\
from standard equation we know that
a {x}^{2}  + bx + c \\  {x}^{2}  - ( \frac{ - b}{a} )x +  \frac{c}{a}  \\  \alpha  +  \beta  =  \frac{ - b}{a}  =  \frac{6}{5}  \\  \alpha  \beta  =  \frac{c}{a}  =  \frac{6}{25}  \\  {x}^{2}  -  \frac{6}{5} x +  \frac{6}{25}  \\ 25 {x}^{2}  - 30x + 6
is the answer polynomial.
Answered by Raunac
5
hope it helps you a lot
Attachments:
Similar questions