Math, asked by yashg6269, 1 year ago

་་་་་་find the quadratic polynomial whose zeros are 7 + root 3 and 7 minus root 3

Answers

Answered by Sharad001
75

Question :-

Find the quadratic polynomial whose zeros are 7 +√3 and 7 - √3 .

Answer :-

\boxed{\sf{  {x}^{2}  - 14x + 46 = 0}} \:

To Find :-

→ Quadratic polynomial .

Explanation :-

 \sf{let \: given \: zeros \: are \:  \alpha  \:  \: and \:  \beta } \\  \\  \sf{sum \: of \: zeros \:  =  \alpha  +  \beta } \\  \\ \implies  \sf{  \alpha  +  \beta  = 7 +  \sqrt{3}  + 7 -  \sqrt{3} } \\  \\  \implies \: \boxed{  \alpha  +  \beta  = 14} \\  \\ \sf{ now \: product \: of \: zeros \:  =  \alpha  \beta } \\  \\  \implies \:  \alpha  \beta  = (7 +  \sqrt{3} )(7 -  \sqrt{3} ) \\  \\  \implies \:  \alpha  \beta  = 49 - 3 \\  \\  \implies \: \boxed{  \alpha  \beta  = 46} \\  \\

Then required quadratic polynomial is ,

 \implies \sf{  {x}^{2}  - ( \alpha  +  \beta )x +  \alpha  \beta  = 0} \\   \\  \implies  \boxed{\sf{  {x}^{2}  - 14x + 46 = 0}}

Similar questions