Math, asked by maikeltoppo30, 4 months ago


Find the quadratic polynomial whose zeros are are 3-√3/5 and 3+√3/5​

Answers

Answered by Anonymous
130

\dag\:\underline{\sf AnsWer :} \\

We are provided that , 3 - √3/5 and 3 + √3/5 are the zeros of the quadratic polynomial. We need find the quadratic polynomial.

\dag\:\underline{\tt Let \:  \alpha =\dfrac{3 - \sqrt{3}}{5}   \:and \:  \beta = \dfrac{3  +  \sqrt{3}}{5} } \\

\qquad \quad\ddag \: \underline{\textbf{Sum of zeros : }} \\

:\implies\sf Sum \:  of  \: zeros = \alpha + \beta \\

:\implies\sf Sum \:  of  \: zeros =\dfrac{3 - \sqrt{3}}{5}  +\dfrac{3  +  \sqrt{3}}{5} \\

:\implies\sf Sum \:  of  \: zeros =\dfrac{3  + 3}{5}  \\

:\implies \underline{ \boxed{\sf Sum \:  of  \: zeros  =  \dfrac{6}{5}  }}\\

Hence,the sum of zeros is 6.

Now, let's find the product of the zeros :

\qquad \quad\ddag \: \underline{\textbf{Product of zeros : }} \\

:\implies\sf Product \:  of  \: zeros = \alpha  \beta \\

:\implies\sf Product \:  of  \: zeros = \Bigg(\dfrac{3 - \sqrt{3}}{5} \Bigg)   \times \Bigg( \dfrac{3  +  \sqrt{3}}{5}  \Bigg)\\

:\implies\sf Product \:  of  \: zeros = \dfrac{ {(3)}^{2}  - (\sqrt{3 })^{2} }{ {(5)}^{2} }  \\

:\implies\sf Product \:  of  \: zeros = \dfrac{ 9  - 3 }{ 25 }  \\

:\implies \underline{ \boxed{\sf Product \:  of  \: zeros = \dfrac{6}{ 25 }}}  \\

Hence,the product of zeros is 6/25.

\qquad \quad\ddag \: \underline{\textbf{Quadratic Polynomial : }} \\

\dashrightarrow\:\:\sf p(x) = k\bigg[ x^2 - (\alpha + \beta)x + \alpha \beta\bigg]  \\

\dashrightarrow\:\:\sf p(x) = k\bigg[ x^2 -  \left( \dfrac{6}{5}   \right)x +   \dfrac{6}{25} \bigg]  \\

\dashrightarrow\:\:\sf p(x) =  x^2 -   \dfrac{6}{5} x +   \dfrac{6}{25} \\

\dashrightarrow\:\:\sf p(x) =  25 \times x^2 -   6+   5 x\times 6 \\

\dashrightarrow\:\:\sf p(x) =  25x^2 - 6+   30 x \\

\dashrightarrow\:\:\sf p(x) =  25  x^2 -   6 +  30x  \\

\dashrightarrow\:\: \underline{ \boxed{\sf p(x) =  25x^2 - 30x+  6}}\\

Answered by diajain01
53

{\boxed{\underline{ \pink{\tt{Required \:  \:  answer:-}}}}}

★GIVEN:-

  •  \tt{\alpha =  \frac{3 -  \sqrt{3} }{5} }

  •   \tt\beta = { \frac{3 +  \sqrt{3} }{5} }

★TO FIND :-

  • quadratic polynomial

★SOLUTION:-

Sum of zeros:-

:  \implies \tt{ \alpha \:   +  \beta =  \frac{3 -  \sqrt{3} }{5}  +  \frac{3 +  \sqrt{3} }{5} }

:  \implies \tt{ \alpha \:   +  \beta =  \frac{3 -  \sqrt{3}  + 3 +  \sqrt{3} }{5} }

:  \implies \tt{ \alpha \:   +  \beta =  \frac{6}{5} }

NOW,

Product of zeros

   : \implies \tt{ \alpha \beta = ( \frac{3 -  \sqrt{3} }{5} })( \frac{3 +  \sqrt{3} }{5} )

   : \implies \tt{ \alpha \beta = \frac{9 - 3}{25} }

   : \implies \tt{ \alpha \beta = \frac{6}{25} }

Standard equation is:-

{ \boxed{ \underline{ \mathsf{ \purple{ax^2 + bx + c }}}}}

 :  \longrightarrow {x}^{2}  - ( \frac{ - b}{a} )x +  \frac{c}{a}

 :  \longrightarrow \bf{ \:  \alpha \:  +  \beta \:  =  \frac{ - b}{a}  =  \frac{6}{5} }

 :  \longrightarrow \bf{ \alpha \beta =  \frac{c}{a} =  \frac{6}{25}  }

Putting the values:-

 :  \longrightarrow \sf{ {x}^{2} -  \frac{6}{5} x +  \frac{6}{25}  }

 \leadsto \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  { \boxed{ \underline{ \blue{ \sf{ 25 {x}^{2}   - 30x + 6}}}}}

This is the required polynomial.

Similar questions