Math, asked by bavisettikumari8, 2 months ago

Find the quadratic polynomial with zeroes 2 and

−1 /3

Answers

Answered by CuteAnswerer
13

GIVEN :

  • \bf{\alpha = 2 }

  • \bf{\beta = \dfrac{ - 1}{3}  }

TO FIND :

  • Quadratic Polynomial.

FORMULA REQUIRED :

  • \underline{\boxed{\purple{\bf{x^2- \left(\alpha + \beta\right)x + \alpha\beta =0 }}}}

SOLUTION :

Sum of Zeros :

:  \leadsto  \alpha  +  \beta  \\ \\    :  \leadsto2 +  \dfrac{ - 1}{3}   \\ \\

:  \leadsto\dfrac{ 6 + (- 1)}{3}  \\   \\

 :  \leadsto\dfrac{ 6 - 1}{3}  \\   \\

:  \leadsto \bf{\dfrac{ 5}{3}}

Product of Zeros :

 : \leadsto \alpha  \beta   \\  \\

: \leadsto 2 \times  \dfrac{ - 1}{3}  \\ \\

 : \leadsto \bf{ \dfrac{ - 2}{3} }

  • By substituting the values, \alpha + \beta = \dfrac{ 5}{3} and \alpha \beta = \dfrac{-2}{3}

:\implies {\sf x^2 - \left(\alpha + \beta \right)x + \alpha \beta = 0}\\ \\

 :\implies {\sf x^2-  \left( \dfrac{5}{3}  \right )x+\dfrac{ - 2}{3} =0 }\\ \\

 :\implies {\sf x^2-  \dfrac{5}{3}  x - \dfrac{ 2}{3} =0 }\\ \\

:  \implies \sf{ \dfrac{ 3x ^2 - 5x  - 2}{3}  = 0}

  • By cross multiplication :

 :  \implies \sf{ 3x ^2 - 5x  - 2 = 0 \times 3} \\  \\

:  \implies   \underline{\boxed{ \purple{\bf{ 3x ^2 - 5x  - 2 = 0 }}}}

\huge{\green{\therefore}}Quadratic polynomial = \bf{ 3x ^2 - 5x  -2}

Similar questions