Math, asked by rajeshg2782, 1 month ago

find the quadratic polynomials whose sum and products of the zeroes are -2√3 and -9. Also find its zeroes.​

Answers

Answered by LivetoLearn143
0

\large\underline{\sf{Solution-}}

Let assume that

\rm :\longmapsto\: \alpha  \: and \:  \beta  \: be \: the \: zeroes \: of \: polynomial \: f(x).

It is given that

\rm :\longmapsto\: \alpha  +  \beta  =  -  \: 2 \sqrt{3}

and

\rm :\longmapsto\: \alpha  \beta  =  -  \: 9

So,

The required Quadratic polynomial is

\rm :\longmapsto\:f(x) =  {x}^{2} - ( \alpha  +  \beta)x +   \alpha  \beta

On substitute the values from above,

\rm :\longmapsto\:f(x) =  {x}^{2}  + 2 \sqrt{3}x - 9

\rm :\longmapsto\:f(x) =  {x}^{2}  + 3 \sqrt{3}x -  \sqrt{3}x  - 9

can be again rewrite as

\rm :\longmapsto\:f(x) =  {x}^{2}  + 3 \sqrt{3}x -  \sqrt{3}x  - 3 \times 3

can be again rewrite as

\rm :\longmapsto\:f(x) =  {x}^{2}  + 3 \sqrt{3}x -  \sqrt{3}x  - 3 \times  \sqrt{3}  \times  \sqrt{3}

\rm :\longmapsto\:f(x) = x(x + 3 \sqrt{3} ) -  \sqrt{3}(x + 3 \sqrt{3})

\rm :\longmapsto\:f(x) = (x + 3 \sqrt{3})(x -  \sqrt{3})

So, the zeroes of f(x) are

\rm :\longmapsto\:x =  - 3 \sqrt{3}  \:  \:  \: or \:  \:  \sqrt{3}

More to know

\rm :\longmapsto\: \alpha  \: and \beta  \: are \: zeroes \: of \: a {x}^{2} +  bx + c, \: then \:

\boxed{{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

and

\boxed{{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

Answered by anshikano594
0

Answer:

I'm your big fan please mark brainliest answers

Similar questions