Math, asked by sharmadipanshu810, 5 months ago

Find the quadratic polynomials whose zeroes are
given below
3-V2, 3+2​

Answers

Answered by Anonymous
5

Question :

Find the quadratic polynomials whose zeroes are 3 - √2 and 3 + √2.

Given :

  • First zero of the Quadratic polynomial = 3 - √2.

  • Second zero of the Quadratic polynomial = 3 + √2.

Solution :

Let the First zero of Quadratic polynomial be α and the second zero be β.

We know the formula for Quadratic polynomial,i.e,

\boxed{\bf{x^{2} + (\alpha + \beta)x + \alpha\beta}}

Now by using the above formula and substituting the values in it, we get :

Here ,

  • α = 3 - √2
  • β = 3 + √2

\boxed{\bf{x^{2} + (\alpha + \beta)x + \alpha\beta}}

:\implies \bf{x^{2} + (\alpha + \beta)x + \alpha\beta} \\ \\ \\

:\implies \bf{x^{2} + (3 + \sqrt{2} + 3 - \sqrt{2})x + (3 + \sqrt{2})(3 - \sqrt{2})} \\ \\ \\

:\implies \bf{x^{2} + (3 + \not{\sqrt{2}} + 3 - \not{\sqrt{2}})x + (3 + \sqrt{2})(3 - \sqrt{2})} \\ \\ \\

:\implies \bf{x^{2} + (3 + 3)x + (3 + \sqrt{2})(3 - \sqrt{2})} \\ \\ \\

:\implies \bf{x^{2} + 6x + (3 + \sqrt{2})(3 - \sqrt{2})} \\ \\ \\

:\implies \bf{x^{2} + 6x + 3(3 - \sqrt{2}) + \sqrt{2}(3 - \sqrt{2})} \\ \\ \\

:\implies \bf{x^{2} + 6x + 9 - 3\sqrt{2} + 3\sqrt{2} - 2} \\ \\ \\

:\implies \bf{x^{2} + 6x + 9 - \not{3\sqrt{2}} + \not{3\sqrt{2}} - 2} \\ \\ \\

:\implies \bf{x^{2} + 6x + 9 - 2} \\ \\ \\

:\implies \bf{x^{2} + 6x + 7} \\ \\ \\

\boxed{\therefore \bf{x^{2} + 6x + 7}} \\ \\ \\

Hence the quadratic equation formed is x² + 6x + 7.

Answered by ItźDyñamicgirł
16

Question

Find the quadriatic whose zeroes are given below 3 - √2 , 3 + √2

Given

  • first zero of quadriatic polynomial 3 - √2
  • second zero of quadriatic polynomial 3 + √2

Solution

Given zeros of polynomial are 3 + √2

 \sf \: let \: a  \: and \: \beta  \: be \: zeros \: of \: polynomial \:

 \\   \sf \: a +  \beta  = 3 +  \sqrt{2}  + 3 -  \sqrt{2}  = 6..........(1) \\

 \\ \sf \: a \beta (3 +  \sqrt{2} )(3 -  \sqrt{2} ) \\

 \\    \sf \: a \beta  = 9 - 3 \sqrt{2}  + 3 \sqrt{2}  - 2 = 7..........(2) \\

then quadriatic equation is

 \\  \sf {x}^{2}  - (a +  \beta )x +  a  \beta  = 0 \\

from (1) and (2)

 \\ \sf \:  hence \: the \: quadriatic \: equation \: we \: get \: {x }^{2}  - 6x + 7 = 0 \\

Similar questions