Math, asked by ashishthakur63685, 2 months ago

find the quadric polynomial whose zeroes are 2 and -6.and verify the relationship between the zeroes of the polynomial​

Answers

Answered by ItzAditt007
53

Answer:-

Your answer is \bf x^2+4x-12.

Explanation:-

Given:-

  • Zeroes of a polynomial are 2 and -6.

To Find:-

  • The Polynomial.

  • Also to verify the relationship between the zeroes of the polynomial.

Concept Used:-

A quadratic polynomial is always in the form,

 \\  \tt :  \implies  {x}^{2}  - ( \alpha  +  \beta )x + ( \alpha  \beta ).

Where,

  • \rm\alpha\:\:And\:\:\beta are zeroe of the polynomial.

Solution.

So Here,

\\ \tt\mapsto  \alpha = 2.

\\ \tt\mapsto \beta  =  - 6.

Therefore,

\\ \tt\mapsto \alpha  +  \beta  = 2 + ( - 6).

\\ \bf\mapsto \boxed{ \bf \alpha  +  \beta  =  - 4.}

And,

\\ \tt\mapsto \alpha  \beta  = 2 \times ( - 6).

\\ \bf\mapsto \boxed{ \bf  \alpha  \beta  =  - 12}.

So The Polynomial will be,

\\  \tt : \implies p(x) =  {x}^{2}  - ( \alpha  +  \beta )x +  \alpha  \beta .

\\  \tt : \implies p(x) =  {x}^{2}  - ( - 4)x + ( - 12).

\\ \large\bf : \implies  \boxed{ \bf p(x) =  {x}^{2}  + 4x - 12.}

\bf\therefore The required polynomial is \bf x^2+4x-12.

_________________________

VerificaTion:-

We know that,

\\ \tt\mapsto  \alpha  +  \beta  =   - \frac{b}{a} \\   \\ \rm and \\  \\ \tt\mapsto \alpha  \beta  =  \frac{c}{a}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Where,

  • a = Coefficient of x².
  • b = Coefficient of x.
  • c = Constant term.

So Here,

  • a = 1.
  • b = 4.
  • c = -12.

Sum Of Zeroes,

\\ \tt\mapsto \alpha  +  \beta  =  - 4.

Also

\\ \tt\mapsto  - \frac{b}{a}  =  - 4.

Hence verified....

Product Of Zeroes,

\\ \tt\mapsto \alpha  \beta  =  - 12.

Also

\\ \tt\mapsto \frac{c}{a}  =  - 12.

Hence Verified....

_________________________

Answered by MяMαgıcıαη
108
  • \large\boxed{\sf{\purple{Polynomial = x^2 + 4x - 12}}}

Explanation :

\underline{\underline{\bf{Given \::-}}}

  • Zeroes of quadratic polynomial = 2 and -6

\underline{\underline{\bf{To\:Find \::-}}}

  • Quadratic polynomial = ?
  • Also verify the relationship between the zeroes and coefficients.

\underline{\underline{\bf{Solution \::-}}}

  • Let zeroes of polynomial = α and β
  • So, α = 2 and β = -6
  • Sum of zeroes = α + β = 2 + (-6) = 2 - 6 = -4
  • Product of zeroes = α × β = 2 × (-6) = -12

We know that :-

\qquad\leadsto\quad\sf p(x) = x^2 - (\alpha + \beta)x + \alpha\beta

\qquad\leadsto\quad\sf p(x) = x^2 - (-4)x + (-12)

\qquad\leadsto\quad{\boxed{\frak{\green{p(x) = x^2 + 4x - 12}}}}\:\red{\bigstar}

\quad\red{\therefore}\:{\underline{\sf{Polynomial = \bf{x^2 + 4x - 12}\:\sf{respectively.}}}}

Verifying relation b/w zeroes and coefficients :-

  • Sum of zeroes = -b/a
  • Product of zeroes = c/a

\qquad\leadsto\quad\small\sf \alpha + \beta = \dfrac{-b}{a}\:,\:\alpha\beta = \dfrac{c}{a}

Values that we have :-

  • α + β = -4
  • αβ = -12
  • a = coefficient of = 1
  • b = coefficient of x = 4
  • c = constant term = -12

Putting all known values :-

\qquad\leadsto\quad\small\sf -4 = \dfrac{-4}{1}\:,\:-12 = \dfrac{-12}{1}

\qquad\leadsto\quad\small\sf -4 = -4\:,\:-12 = -12

\qquad\leadsto\quad\small\sf \cancel{-}4 = \cancel{-}4\:,\:\cancel{-}12 = \cancel{-}12

\qquad\leadsto\quad\small\bf{\red{4} = \red{4}\:,\:\red{12} = \red{12}}

\qquad\qquad\underline{\underline{\bf{Hence,\:Verified!}}}

ㅤㅤㅤㅤㅤㅤ━━━━━━━━━━

\underline{\underline{\bf{More\:to\:know \::-}}}

ㅤㅤ Sridhara Acharya's formula

\qquad\blue\bigstar\:{\underline{\boxed{\bf{\orange{x = \dfrac{-b \:\pm\:\sqrt{b^2 - 4ac}}{2a}}}}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions