Math, asked by biswashree73491, 1 month ago

Find the quadrilatral whose sides are ab=8cm,bc=15cm,cd=12cm,ad=25cm and angle b=90degree

Answers

Answered by Anonymous
0

In right ΔABC,

AB^2 + BC^2 = AD^2

AC^2 = 15^2 + 8^2

AC = \sqrt {15^2 + 8^2}

= \sqrt {225 + 64}

= \sqrt 289

= 17 cm

Length of AC = 17 cm

 \small{Area  \: of \:  ΔABC = \frac {1}{2} (8 \times 15) = 60 cm^2}

Now, In ΔACD, AD = 25 cm, AC = 17 cm & CD = 12 cm

Using Heron's Formula, semiperimeter,

s = \frac {a + b + c}{2}

= \frac {17+12+25}{2}

 \implies \frac {54}{2} = 27 cm

Length of AD = 27 cm

 \small{Area \:  of  \: ΔACD = \sqrt {s(s-a)(s-b)(s-c)} }

 \small \bold{=\sqrt {27(27-17)(27-12)(27-25)} }

= \sqrt {27 \times 10 \times 15 \times 2}

 \small{= \sqrt {3 \times 3 \times 3 \times 2 \times 5 \times 3 \times 5 \times 2} }

= 3 \times 3 \times 2 \times 5

= 90 cm^2

Hence, Area of Quadrilateral ABCD = Area of ΔABC + Area of ΔACD

= 60 + 90

= 150 cm^2

Similar questions