Math, asked by henryshalom838, 7 months ago

Find the quotient and remainder
( 4x3+6x2-23x+18) ÷ (x+3)​

Answers

Answered by ItzMysticalBoy
68

Given:

  • \sf{p(x) =  4x ^3+6x^2 -23x+18}
  • \sf{g(x) = x+3}

To Find :

  • Reminder.

Solution :-

By Remainder Theorem :

Let g(x) = 0.

 : \implies{ \sf{x + 3 = 0}}

 : \implies{ \sf{x = 0 - 3}}

  : \implies{ \tt{x =  - 3}}

__________________

 \sf{p(x) =  4x^3+6x^2 -23x+18}

 \sf{p(- 3) = 4(- 3)^3+6(-3)^2-23( - 3)+18}

\sf{p( - 3) =  4 ( - 27 )+6 (9) -23 ( - 3)+18}

 \sf{p( - 3) =  ( - 108)+54  + 69+18}

 \sf{p( - 3) = - 108+54 + 69+18}

 \sf{p( - 3) =   - 108+141}

  \to{\underline{ \boxed{\tt{p( - 3) = 33}}}}

\therefore{\underline {\pink{\sf{Remainder= 33.}}}}

★ Remainder theorem :- If p(x) is a polynomial and p(x) is divided by the linear polynomial x + a, Then the Remainder is p(-a).


Vamprixussa: Perfect !
prince5132: Well done !
Answered by ItzDeadDeal
56

Answer :-

Given :- f(x) = 4x³ - 3x² + 2x + 1 ;

g(x) = x² - 3x + 6.

To Find :- Quotient & Remainder.

Solution :-

___________________

x² - 3x + 6) 4x³ - 3x² + 2x + 1 (4x + 9

4x³- 12x² + 24x

- + -

_____________________

9x² - 22x + 1

9x² - 27x + 54

- + -

_____________________

5x - 53

 \sf{Hence}

 \bf{The  \: Quotient = 4x + 9 ;}

\rm{ \: Remainder = 5x - 53.}</p><p>

 \huge \rm \pink{Division  \: Algorithm :-}</p><p>

  • Division Algorithm is a division in which degree of Dividend is compares with degree of Divisor to know the quotient.

Vamprixussa: Keep up the good work !
Similar questions