Find the quotient and remainder of (x^4+6x^3+13x^2+15x-1)/x^2+3x+2
Answers
Answered by
27
p(x) = x⁴ + 6x³ + 13x² + 15x - 1
g(x) = x² + 3x + 2
By Long Division Method, we obtained :
• Quotient - x² + 3x + 4
• Remainder = 3x - 1
[Refer to the attachment]
★ Dividend = Divisor × Quotient + Remainder
→ x⁴ + 6x³ + 13x² + 15x - 1 = (x² + 3x + 2) (x² + 3x + 4) + 3x - 1
→ x⁴ + 6x³ + 13x² + 15x - 1 = x²(x² + 3x + 4) + 3x(x² + 3x + 4) + 2(x² + 3x + 4) + 3x - 1
→ x⁴ + 6x³ + 13x² + 15x - 1 = x⁴ + 3x³ + 4x² + 3x³ + 9x² + 12x + 3x - 1
→ x⁴ + 6x³ + 13x² + 15x - 1 = x⁴ + 3x³ + 3x³ + 4x² + 9x² + 12x + 3x - 1
→ x⁴ + 6x³ + 13x² + 15x - 1 = x⁴ + 6x³ + 13x² + 15x - 1
Hence, Verified!
Attachments:
Answered by
0
Step-by-step explanation:
Remainder --- 3x-1
Quotient ---- x²+ 3x +4
We have solved by long division method
Attachments:
Similar questions