Math, asked by narayanaswamynitin1, 6 months ago

Find the quotient and the remainder
and also verify the result
x3 + 2x - 52-3 is divided by 32+3x2​

Answers

Answered by Singham69
1

Step-by-step explanation:

\textbf{Given:}Given:

30x^4+11x^3-82x^2+12x+48{\div}3x^2+2x-430x

4

+11x

3

−82x

2

+12x+48÷3x

2

+2x−4

\textbf{To find:}To find:

\text{Quotient and remainder}Quotient and remainder

\textbf{Solution:}Solution:

\text{Consider,}Consider,

\begin{gathered}\begin{array}{r|l}&10x^2-3x-12\\\cline{2-2}3x^2+2x-4&30x^4+11x^3-82x^2+12x+48\\&30x^4+20x^3-40x^2\\\cline{2-2}&****-9x^3-42x^2+12x\\&****-9x^3-\;6x^2+12x\\\cline{2-2}&********-36x^2+\;0x+48\\&********-36x^2-12x+48\\\cline{2-2}\\&**************12x\\\cline{2-2}\end{array}\end{gathered}

\cline2−23x

2

+2x−4

\cline2−2

\cline2−2

\cline2−2

\cline2−2

10x

2

−3x−12

30x

4

+11x

3

−82x

2

+12x+48

30x

4

+20x

3

−40x

2

∗∗∗∗−9x

3

−42x

2

+12x

∗∗∗∗−9x

3

−6x

2

+12x

∗∗∗∗∗∗∗∗−36x

2

+0x+48

∗∗∗∗∗∗∗∗−36x

2

−12x+48

∗∗∗∗∗∗∗∗∗∗∗∗∗∗12x

\text{From the above long division,}From the above long division,

\text{Quotient}=10x^2-3x-12Quotient=10x

2

−3x−12

\text{Remainder}=12xRemainder=12x

\textbf{Verification:}Verification:

\boxed{\textbf{Dividend=(Divisor$\times$Quotient)+Remainder}}

Dividend=(Divisor×Quotient)+Remainder

\textbf{(Divisor$\times$Quotient)+Remainder}(Divisor×Quotient)+Remainder

=(3x^2+2x-4)(10x^2-3x-12)+12x=(3x

2

+2x−4)(10x

2

−3x−12)+12x

=(30x^4-9x^3-36x^2+20x^3-6x^2-24x-40x^2+12x+48)+12x=(30x

4

−9x

3

−36x

2

+20x

3

−6x

2

−24x−40x

2

+12x+48)+12x

=(30x^4+11x^3-82x^2+0x+48)+12x=(30x

4

+11x

3

−82x

2

+0x+48)+12x

=30x^4+11x^3-82x^2+12x+48=30x

4

+11x

3

−82x

2

+12x+48

=\textbf{Dividend}=Dividend

\textbf{Hence verified}Hence verified

Similar questions