Math, asked by kunalgavit15, 3 months ago

Find the radian measure of the interior angles of regular polygon of 18
sides..????​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

We know that,

  • In a regular polygon of 'n' sides,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \sf \: Exterior  \: angle \:  =  \: \dfrac{360 \degree \: }{n}}

and

 \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \sf \: Interior \:  angle \:  =  \: 180\degree \: - Exterior  \: angle}

Now,

It is given that

  • Number of sides of regular polygon, n = 18

\rm :\implies\:Exterior \: angle = \dfrac{360\degree \:}{18}

\bf\implies \:Exterior \: angle = 20\degree \:

So,

\rm :\longmapsto\:Interior \: angle = 180\degree \: - Exterior \: angle

\rm :\longmapsto\:Interior \: angle = 180\degree \: - 20\degree \:

\rm :\longmapsto\:Interior \: angle = 160\degree

\rm :\longmapsto\:Interior \: angle = 160 \times \dfrac{\pi}{180}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \red{ \sf \:  \because \: 1\degree \: = \dfrac{\pi}{180} \: radians}}

\bf\implies \:Interior \: angle \:  = \dfrac{8\pi}{9}  \: radians

Additional Information :-

  • 1. Sum of all interior angles of a polygon of n sided figure is (2n - 4) × 90°.

  • 2. Sum of all exterior anglea of a polygon of n sided figure is 360°.

Answered by kvnmurty
0

Answer:

π/9 radians

Step-by-step explanation:

Sum of all internal angles of a polygon is always equal to 2 π radians.

In a regular polygon all angles are identical.

So each internal angle= 2 π/18 = π/9 radians.

Similar questions