Math, asked by experts90, 9 months ago

Find the radius and circumference of a circle, whose area is:
(i) 1386 cm^2
(ii) 3850 cm^2
please answer with prosedure properly​

Answers

Answered by Anonymous
2

\star\boxed{\mathfrak\pink{\underline{\underline{Answer}}}}\star\\\\\\

\textbf{i)\:\:3\:cm\:and\:18.8571428571\:cm}\\

\textbf{ii)\:\:35\:cm\:220\:cm}\\\\

\star\star\boxed{\mathbb\red{\underline{\underline{GIVEN}}}}\star\star\\\\\\

\odot\textbf{Area\:of\:first\:circle\:=\:$1386\:{cm}^2$}\\\\

\odot\textbf{Area\:of\:second\:circle\:=\:$3850\:{cm}^2$}\\\\\\

\star\star\star\boxed{\mathbb\green{\underline{\underline{TO\: CALCULATE}}}}\star\star\star\\\\\\

\odot\textbf{Radius\:and\: circumference\:of\:both\:circles}\\\\\\

\star\star\star\star\boxed{\mathcal\red{\underline{\underline{Explanation}}}}\star\star\star\star\\\\\\

\textbf{Let\:the\:radius\:of\:first\:and\:second\:circle\:be\:r\:and\:R.}\\\\

\boxed{\textsf{Area of circle = $\pi\:r^2$}}\\\\

\mathbb{I}\\\\\\

\Longrightarrow\textsf{$1386\:cm^2=\pi\:r^2$}\\\\

\textsf{Substituting the value of $\pi\:as\:\dfrac{22}{7}$}\\

\Longrightarrow\textsf{$1386\:{cm}^2=\:\dfrac{22}{7}\:\times\:r^2$}\\\\

\textsf{$\dfrac{1386\:\times\:7}{22} =r^2$}\\

\Longrightarrow\textsf{$r^2=9\:{cm}^2$}\\

\huge\boxed{\textbf{r=3\:cm}}\\\\

\Longrightarrow\textsf{$1386\:cm^2=\pi\:r^2$}\\\\

\textsf{Substituting the value of $\pi\:as\:\dfrac{22}{7}$}\\

\Longrightarrow\textsf{$3850\:{cm}^2=\:\dfrac{22}{7}\:\times\:R^2$}\\

\textsf{$\dfrac{3850\:\times\:7}{22} =R^2$}\\

\Longrightarrow\textsf{$R^2=1225\:{cm}^2$}\\

\huge\boxed{\textbf{R=35\:cm}}\\\\

\huge\boxed{\textsf{Circumference}}\\\\\\

\boxed{\textsf{Circumference of Circle=$2\pi\:\times\:r$}}\\

\textsf{where r is the radius of the circle }\\\\\\

\textsf{Circle 1 = $2\times\:\pi\:3\:cm$}\\

\boxed{\textsf{Circumference of Circle 1=18.8571428571 cm}}\\\\\\

\textsf{Circle 2= $2\times\:\pi\:35\:cm$}\\

\boxed{\textsf{Circumference of Circle 2 = 220 cm}}\\\\

\therefore\textbf{The\:Answer\:is}\\\\

\textbf{i)\:\:3\:cm\:and\:18.8571428571\:cm}\\

\textbf{ii)\:\:35\:cm\:and\:220\:cm}\\\\

▬▬▬▬▬ஜ۩۞۩ஜ▬▬▬▬▬▬

Similar questions