Math, asked by chandandhare17, 3 months ago

find the radius and diameter of the circle given the area -1386m2​

Answers

Answered by DoctorSensitive
14

 \large {\red {\underline {\overline {\mid {\sf {Aim:-{\mid }}}}}}}

To find the radius and diameter of a circle whose area is 1386 m².

 \large {\red {\underline {\overline {\mid {\sf {Pre - requisite \: knowledge :-{\mid }}}}}}}

  •  \small{\orange {\boxed {\bf {Area \: of \: a \: circle = πr² }}}}
  •  \small{\orange {\boxed {\bf {Diameter = 2 × Radius }}}}

 \large {\red {\underline {\overline {\mid {\sf {Calculation:-{\mid }}}}}}}

  Area \: of \: circle = πr² \\ ⇒1386 m² = \frac {22}{7} × r² \\ ⇒ 1386 × \frac {7}{22} = r² \\⇒441 = r² \\⇒\sqrt{441} = r \\⇒r = 21 m

 \small{\orange {\boxed {\bf {Radius = 21m \: and \: Diameter = 42m}}}}

Answered by Anonymous
25

Given:

  • area of a circle is 1386m²

 \\

To Find:

  • the radius and diameter of the circle.

 \\

Solution:

 \\

◐ Now, we have given the area of the circle and it's said to find the Radius and the diameter of the circle.

 \\

{ \blue{ \underline{ \frak{As \: we \: know \: that \dag}}}}

 \\

  \longrightarrow\blue{ \underline{ \boxed{ \pink{ \pmb{ \mathfrak{ area \: of \: a \: circle = \pi \: {r}^{2} }}} }\bigstar}}

 \\

Where,

  • ➪ π stands for {\bf{\frac{22}{7}}}
  • ➪ r stands for {\bf{ Radius}}

 \\

Let's substitute the values now :

 \\

{ : \implies} \sf \: area _{(circle)} \:  =  \pi{r}^{2} \:  \:  \:  \:   \\  \\  \\ { : \implies} \sf 1386 {m}^{2}  =   \frac{22}{7}  \times  {r}^{2}  \\  \\  \\ { : \implies} \sf  {r}^{2}  =  \frac{1386 \times 7}{22}  \:  \:  \:  \:  \:  \:  \\  \\  \\ { : \implies} \sf  \:  {r}^{2}  = 441 {m}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ { : \implies} \sf r =  \sqrt{441 {m}^{2} }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\  \\ { : \implies} \sf  { \purple{ \underline{ \boxed{{ \frak{r = 21m}}}} \bigstar}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \\

 \therefore{ \rm { \underline{the \: radius \: of \: the \: circle = 21m \bigstar}}}

Now, let's find the diameter

  • As we know that,

Diameter = 2[ radius]

Diameter = 2 [21m]

Diameter = 42m

 \\

Daigram of circle:

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\qbezier(2.3,0)(2.121,2.121)(0,2.3)\qbezier(-2.3,0)(-2.121,2.121)(0,2.3)\qbezier(-2.3,0)(-2.121,-2.121)(0,-2.3)\qbezier(2.3,0)(2.121,-2.121)(-0,-2.3)\put(0,0){\line(1,0){2.3}}\put(0.5,0.3){\bf\large 21cm}\end{picture}

\\

More to know:

  • area of a square = side²

  • area of a rectangle = length × breadth

  • area of a triangle ½ base × hieght

  • area of a parallelogram = base×hieght

 \\

hope this helped

Similar questions