Math, asked by alfasamir58, 1 month ago

Find the radius of a circle whose area is equal to the sum of the areas of four other circles of radii 5m, 6m, 8m and 10m? ​

Answers

Answered by MysticSohamS
1

Answer:

hey here is your solution

pls mark it as brainliest

Step-by-step explanation:

so \: here \\ let \: the \: radius \: of \: circle \: whose \: area \\ is \: to \: be \: found \: be \: x.m \\  \\ similarly \\ let \: the \: radii \: of \: other \: four \: circles \:  \\ be  \: \: a.m \: , \: b.m \: , \: c.m \: and \: d.m \\  \\ so \: here \\ a = 5.m \\ b = 6.m \\ c = 8.m \\ d = 10.m

 according \: to \: given \: condition \\  \\ \pi.x {}^{2}  = \pi.a {}^{2}  + \pi.b {}^{2}  + \pi.c {}^{2}  + \pi.d {}^{2}  \\  \\ \pi.x {}^{2}  = \pi(a {}^{2}  + b {}^{2}  + c {}^{2}  + d {}^{2} ) \\  \\  = (5) {}^{2}  + (6) {}^{2}  +(8) {}^{2}   + (10) {}^{2}  \\  \\  = 25 + 36 + 64 + 100 \\  \\ x {}^{2}  = 225 \\  \\

so \: thus \: then \\  \\ area \: of \: required \: circle =  \\ \pi.x {}^{2}  \\  \\  = 225\pi \: m {}^{2}

Similar questions