Math, asked by attitudeboy90778, 15 hours ago

find the radius of a cylinder whose hight is 14cm and volume is 891cm√​

Answers

Answered by MoodyCloud
12

Answer:

Radius of cylinder is 4.5 cm .

Step-by-step explanation:

Given :

  • Height of cylinder is 14 cm.
  • Volume of cylinder is 891 cm³.

To find :

  • Radius of cylinder.

Solution :

We know,

Volume of cylinder = πh

[Where, r is radius and h is height of cylinder]

Now, Put given volume and height of cylinder in formula :

 \implies \sf 891 = \pi r^{2} h

 \implies \sf 891 = \dfrac{22}{7} \times r^{2} \times 14

 \implies \sf 891 = \dfrac{308}{7} \times r^{2}

 \implies \sf 891 = 44 \times r^{2}

 \implies \sf \dfrac{891}{44} = r^{2}

 \implies \sf r^{2} = 20.25

 \implies \sf r = \sqrt{20.25}

 \implies \pmb{\sf r = 4.5}

Therefore,

Radius of cylinder is 4.5 cm.

________*

Three more formulas of cylinder are :

  1. Total surface area of cylinder is 2πr(r + h) or 2πr² + 2πrh.
  2. Curved surface area or Lateral surface area of cylinder is 2πrh.
  3. Base area of cylinder is πr².
  • Where, In all formulas r is radius and h is height of cylinder.
Answered by as3801504
1

Step-by-step explanation:

 </p><p></p><p> </p><p>.</p><p></p><p>{\implies}{ \boxed{\mathbb{\red{given \: that }}}}\\ height  =14 \\ volume  = 891cm^{3} \\  </p><p></p><p> </p><p></p><p></p><p>{\implies}{ \boxed{\mathbb{\blue{step \: by \: step \: explaniation }}}}\\  \\ </p><p></p><p> </p><p>.</p><p></p><p>{\implies}{ \boxed{\mathbb{\pink{ using \: formula}}}} \:  \\ </p><p></p><p> </p><p></p><p>{\implies}{ {\mathbb{\red{volume \:  = \pi {r}^{2} h }}}}\\ 891 =  \frac{22}{7}  \times  {r}^{2}  \times 14 \\ 891 = 22 \times 2 \times  {r}^{2}  \\ 891 = 44 {r}^{2}   \\   {r}^{2}  = \frac{891}{44}  \\   {r}^{2} = 20.25 \\   = r\sqrt{20.25}  \\ r  </p><p></p><p> </p><p></p><p></p><p>{\implies}{ \boxed{\mathbb{\green{= 4.5cm}}}}

Similar questions