Math, asked by hridoykalita58, 1 year ago

Find the radius of a cylinder whose
Total surface area is 11000 m²
and height is 15m.​

Answers

Answered by priyanshukumar510200
3

Answer:

TSA = 2Πr(h+r)

11000 = 2×22/7 × r(15+r)

11000= 44/7×r(15+r)

11000×7/44 = 15r+r²

250×7= 15r+r²

1750= 15r +r²

1750/15 = r+r²

110= r+r²

110-r = r²

r = 110-r

HOPE THIS IS USEFUL TO U

MARK ME AS BRAINLIEST

Answered by BrainlyConqueror0901
4

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Radius\:of\:cylinder=35\:cm}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\ : \implies \text{Height(h) = 15\: m} \\ \\ : \implies \text{T.S.A\:of\:cylinder=}11000 \: m^{2} \\ \\ \red{ \underline \bold{To \: Find : }} \\ : \implies \text{Radius\: of \: cylinder(h) = ? }

• According to given question :

 \bold{As \: we \: know \: that} \\ : \implies \text{T.S.A\: of \: cylinder} =2\pi r(h + r) \\ \\ : \implies 11000=2 \times \frac{22}{7} \times r(15+r) \\ \\ : \implies \frac{77000}{44} =15r+r^{2}

: \implies  {r}^{2}   + 15r - 1750 = 0 \\  \\  :  \implies r =  \frac{ { - 15 \pm}  \sqrt{225  - 4( - 1750)} }{2}  \\  \\   : \implies r =  \frac{ - 15 \pm \sqrt{225 + 7000} }{2}  \\  \\   : \implies r =  \frac{ - 15 \pm85}{2} \\  \\    : \implies r =  \frac{ - 15 + 85}{2}  \\  \\   \green{: \implies  \text{r = 35 \: cm}}

 \purple{\text{Some\:formula\:related\:to\:this\:topic}}\\ \pink{\circ\:\text{Volume\:of\:cylinder}=\pi r^{2}h}\\\\ \pink{\circ\:\text{C.S.A\:of\:cylinder}=2\pi rh}

Similar questions