Math, asked by sghawri2592, 4 months ago

Find the radius of a sphere of volume 60cm^3

Answers

Answered by gayathrivolety
1

Answer:

Step-by-step explanation:

Using the formula

V=4

3πr3

Solving forr

r=(3V

4π)⅓=(3·60

4·π)⅓≈2.42859cm

Answered by MrImpeccable
27

{\huge{\underline{\boxed{\red{\mathcal{Answer}}}}}}

Given:

  • Volume of sphere = 60cm^3

To find:

  • Radius of the sphere

Diagram:

 \setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\qbezier(2.3,0)(2.121,2.121)(0,2.3)\qbezier(-2.3,0)(-2.121,2.121)(0,2.3)\qbezier(-2.3,0)(-2.121,-2.121)(0,-2.3)\qbezier(2.3,0)(2.121,-2.121)(-0,-2.3)\put(0,0){\line(1,0){2.3}}\put(0.5,0.3){\bf\large radius}\put(-1,-1){\bf\large Volume=60}\end{picture}

Solution:

 Volume \:of \:Sphere = \dfrac{4}{3} \pi r^3 \\ \\ \implies 60 = \dfrac{4}{3} *3.14*r^3 \\ \\ \implies \dfrac{60 \times 3}{3.14 \times 4} = r^3 \\ \\ \implies \dfrac{45}{3.14} = r^3 \\ \\ \implies 14.33 = r^3 \\ \\ \implies r\approx \sqrt[3]{14.33} \\ \\ \implies \bold{r\approx 2.43 cm}

Formula Used:

  •  Volume\: of \:Sphere = \dfrac{4}{3} \pi r^3

Learn More:

  • Volume of cylinder = πr²h

  • T.S.A of cylinder = 2πrh + 2πr²

  • Volume of cone = ⅓ πr²h

  • C.S.A of cone = πrl

  • T.S.A of cone = πrl + πr²

  • Volume of cuboid = l × b × h

  • C.S.A of cuboid = 2(l + b)h

  • T.S.A of cuboid = 2(lb + bh + lh)

  • C.S.A of cube = 4a²

  • T.S.A of cube = 6a²

  • Volume of cube = a³

  • Volume of sphere = (4/3)πr³

  • Surface area of sphere = 4πr²

  • Volume of hemisphere = ⅔ πr³

  • C.S.A of hemisphere = 2πr²

  • T.S.A of hemisphere = 3πr²
Similar questions