Math, asked by ANMOL6324, 7 hours ago

find the radius of curvature at point 2,2on curve xy=4​

Answers

Answered by MaheswariS
4

\underline{\textbf{Given:}}

\textsf{Curve is xy=4}

\underline{\textbf{To find:}}

\textsf{Radius of curvature of the given curve at (2,2)}

\underline{\textbf{Solution:}}

\underline{\textbf{Formula used:}}

\textsf{Radius of curvature of the curve y=f(x) is}

\boxed{\mathsf{R=\left|\dfrac{\left(1+\left(\dfrac{dy}{dx}\right)^2\right)^\frac{3}{2}}{\dfrac{d^2y}{dx^2}}\right|}}

\mathsf{Consider,}

\mathsf{xy=4}

\implies\mathsf{y=\dfrac{4}{x}}

\implies\mathsf{y=4\;x^{-1}}

\mathsf{\dfrac{dy}{dx}=-4x^{-2}}

\mathsf{\dfrac{d^2y}{dx^2}=8x^{-3}}

\mathsf{At\;(2,2),}

\mathsf{\dfrac{dy}{dx}=-4(2)^{-2}=\dfrac{-4}{2^2}=-1}

\mathsf{\dfrac{d^2y}{dx^2}=8(2)^{-3}=\dfrac{8}{2^3}=1}

\textsf{Now,\;Radius of curvature}

\mathsf{R=\left|\dfrac{\left(1+\left(\dfrac{dy}{dx}\right)^2\right)^\frac{3}{2}}{\dfrac{d^2y}{dx^2}}\right|}

\mathsf{R=\left|\dfrac{\left(1+(-1)^2\right)^\frac{3}{2}}{1}\right|}

\mathsf{R=\left|\dfrac{\left(1+1\right)^\frac{3}{2}}{1}\right|}

\mathsf{R=\left|\dfrac{2^\frac{3}{2}}{1}\right|}

\mathsf{R=\left|\dfrac{2\sqrt{2}}{1}\right|}

\implies\boxed{\mathsf{R=2\sqrt{2}}}

Similar questions