Math, asked by namanit, 7 months ago

find the radius of curvature at point a,0 on the curve xy^2=a^2(a-x)

Answers

Answered by SHVtheAMIGO
1

Answer:

here is your answer

Step-by-step explanation:

Given :  curve x² + xy + y² = 4

To find : radius of curvature of curve: at radius of curvature of curve:

Solution:  

x² + xy + y² = 4

2x + x(dy/dx) + y  + 2y(dy/dx)  = 0

=> (dy/dx)(x + 2y) =  -(2x + y)

=> dy/dx =  -(2x + y)/(x + 2y)

x = - 2  , y = 0

=> dy/dx =  -(-4 + 0)/(-2 + 0)  =  - 2

2x + x(dy/dx) + y  + 2y(dy/dx)  = 0

=> 2 + x(d²y/dx²)  + dy/dx  + 2y((d²y/dx²) + 2(dy/dx)(dy/dx) = 0

putting x = - 2  , y = 0 & dy/dx = - 2  

=> 2 -2(d²y/dx²)  - 2  + 0  + 2(-2)(-2) = 0

=> d²y/dx² = 4

R =  (  √ (1  + (dy/dx)²)³ )/ (d²y/dx²)  

=> R = √(( 1  + (-2)²)³) / (4)  

=> R =   √125  / 4

Radius of curvature of curve: =   √125  / 4

Learn more:

Answered by jigyanshu1253
0

Answer:

here is your answer

Step-by-step explanation:

Given :  curve x² + xy + y² = 4

To find : radius of curvature of curve: at radius of curvature of curve:

Solution:  

x² + xy + y² = 4

2x + x(dy/dx) + y  + 2y(dy/dx)  = 0

=> (dy/dx)(x + 2y) =  -(2x + y)

=> dy/dx =  -(2x + y)/(x + 2y)

x = - 2  , y = 0

=> dy/dx =  -(-4 + 0)/(-2 + 0)  =  - 2

2x + x(dy/dx) + y  + 2y(dy/dx)  = 0

=> 2 + x(d²y/dx²)  + dy/dx  + 2y((d²y/dx²) + 2(dy/dx)(dy/dx) = 0

putting x = - 2  , y = 0 & dy/dx = - 2  

=> 2 -2(d²y/dx²)  - 2  + 0  + 2(-2)(-2) = 0

=> d²y/dx² = 4

R =  (  √ (1  + (dy/dx)²)³ )/ (d²y/dx²)  

=> R = √(( 1  + (-2)²)³) / (4)  

=> R =   √125  / 4

Radius of curvature of curve: =   √125  / 4

Similar questions