Math, asked by aparukutty34, 9 months ago

find the radius of curvature for the curve xy3=a4 at (a,a)

Answers

Answered by pulakmath007
26

SOLUTION

TO DETERMINE

The radius of curvature at (a,a) for the curve

 \sf{ x {y}^{3}  =  {a}^{4} \: }

FORMULA TO BE IMPLEMENTED

For a curve of the form x = f(y)

The radius of curvature

 \displaystyle \sf{  =  \frac{ { \bigg[ \:  1 +  { \big( \:  \frac{dx}{dy}  \big)}^{2} \bigg] }^{ \frac{3}{2} } }{\frac{ {d}^{2} x}{d {y}^{2} }}}

EVALUATION

Here the given equation of the curve is

 \sf{ x {y}^{3}  =  {a}^{4} \: }

 \implies \sf{ x   =  {a}^{4} {y}^{ - 3}\: }

Differentiating both sides with respect to x we get

 \displaystyle \sf{  \frac{dx}{dy}  =  - 3 {a}^{4}  {y}^{ - 4} \: }

Again Differentiating both sides with respect to x we get

 \displaystyle \sf{  \frac{{d}^{2} x}{d {y}^{2} }  =  12 {a}^{4}  {y}^{ - 5} \: }

Now

 \displaystyle \sf{  \frac{dx}{dy} \bigg|_{(a,a)}    =  - 3 {a}^{4}  {a}^{ - 4}  =  - 3\: }

 \displaystyle \sf{  \frac{ {d}^{2} x}{d {y}^{2} } \bigg|_{(a,a)}    = 12 {a}^{4}  {a}^{ - 5}  =  \frac{12}{a} \: }

Hence the radius of curvature

 \displaystyle \sf{  =  \frac{ { \bigg[ \:  1 +  { \big( \:  \frac{dx}{dy}  \big)}^{2} \bigg] }^{ \frac{3}{2} } }{\frac{ {d}^{2} x}{d {y}^{2} }}}

 \displaystyle \sf{  =  \frac{ { \bigg[ \:  1 +  { \big(  - 3 \big)}^{2} \bigg] }^{ \frac{3}{2} } }{ \frac{12}{a}  }}

 \displaystyle \sf{  =  \frac{ { \bigg[ \:  1 +  9 \bigg] }^{ \frac{3}{2} } }{ \frac{12}{a}  }}

 \displaystyle \sf{  =  \frac{a}{12}{  \big(1 + 10 \big)}^{ \frac{3}{2} } \: }

 \displaystyle \sf{  =  \frac{a}{12}10 \sqrt{10} }

 \displaystyle \sf{  =  \frac{5a \sqrt{10} }{6}}

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

The length of the latus rectum of the parabola

13[(x-3)^2+(y-4)^2 )= (2x-3y+ 5)^2 is

https://brainly.in/question/24980361

Similar questions