Math, asked by madhumithaarumugam27, 5 months ago

find the radius of curvature of the cardiod r=a(1-cos(theta))​

Answers

Answered by nirmal700
13

Answer:

4/3.a.sin(theta/2)

Step-by-step explanation:

1.find dr/d@

2.find d^2r/d@^2

3.Then apply the polar form of radius of curvature

Attachments:
Answered by Raghav1330
12

Given:

r= a(1-cos∅)

To Find:

the radius of curvature

Solution:

    r= a(1-cos∅)

   dr/d∅= a(sin∅) = a sin∅

   d²r/d∅²= a cos ∅

⇒  ∫= [r² + (dr/d∅)]^{3/2}/r² + 2(dr/d∅)²- r× d²r/d∅

 ⇒  [r² + (dr/d∅)]^{3/2}/ r²+ 2(dr/d∅)²- r(d²r/d∅²)

  ⇒ [a² (1-cos∅)² + a²sin²∅]^{3/2}/a²(1-cos∅)²+ 2a²sin²∅-a(1-cos∅)a cos∅

  ⇒[a²- (1+ cos²∅- 2cos∅)+ a²sin²∅]^{3/2}/a²(1-cos∅)²+ 2a²sin²∅-a²(1-cos∅)cos∅

  ⇒ [a²+ a²cos²∅- 2a²cos∅+a²sin²∅]^{3/2}/a²(1-cos∅)²+ 2sin²∅- (1-cos∅)cos∅

  ⇒ [a²+a²-2a²cos∅]^{3/2}/a²(1+cos²∅-2cos∅+2sin²∅-(cos∅-cos²∅)

 ⇒  [2a²(1-cos∅]^{3/2}]/a²(1+ cos²∅-2cos∅+2sin²∅-cos∅+cos∅)

  ⇒ a³[2(1-cos∅)^{3/2}/a²(3-3cos∅)

   ⇒a[2(1-cos∅)]^{3/2}/(1-cos∅)

  ⇒ 2√2a/3  (1-cos∅)^{1/2}

   ⇒2√2a.(2 sin²∅/2)^{1/2}/3

  4/3a sin∅/2

   

   

Similar questions
Math, 10 months ago