Math, asked by triasha27, 3 months ago

Find the radius of curvature of the curve xy= 12 at (3, 4)​

Answers

Answered by MaheswariS
1

\textbf{Given:}

\textsf{Curve is xy=12}

\textbf{To find:}

\textsf{Radius of curvature of the given curve at (3,4)}

\textbf{Solution:}

\textsf{Consider,}

\mathsf{xy=12}

\implies\mathsf{y=\dfrac{12}{x}=12\,x^{-1}}

\mathsf{\dfrac{dy}{dx}=-12x^{-2}}

\mathsf{\dfrac{d^2y}{dx^2}=24x^{-3}}

\mathsf{At\;(3,4),}

\mathsf{\dfrac{dy}{dx}=-12(3)^{-2}=\dfrac{-12}{9}=\dfrac{-4}{3}}

\mathsf{\dfrac{d^2y}{dx^2}=24(3)^{-3}=\dfrac{24}{27}=\dfrac{8}{9}}

\underline{\textsf{Radius of curvature}}

\boxed{\mathsf{R=\dfrac{\left(1+\left(\dfrac{dy}{dx}\right)^2\right)^\frac{3}{2}}{\left|\dfrac{d^2y}{dx^2}\right|}}}

\implies\mathsf{R=\dfrac{\left(1+\left(\dfrac{-4}{3}\right)^2\right)^\frac{3}{2}}{\left|\dfrac{8}{9}\right|}}

\implies\mathsf{R=\dfrac{\left(1+\dfrac{16}{9}\right)^\frac{3}{2}}{\left|\dfrac{8}{9}\right|}}

\implies\mathsf{R=\dfrac{\left(\dfrac{9+16}{9}\right)^\frac{3}{2}}{\left|\dfrac{8}{9}\right|}}

\implies\mathsf{R=\dfrac{\left(\dfrac{25}{9}\right)^\frac{3}{2}}{\left|\dfrac{8}{9}\right|}}

\implies\mathsf{R=\dfrac{\left(\dfrac{5^2}{3^2}\right)^\frac{3}{2}}{\left|\dfrac{8}{9}\right|}}

\implies\mathsf{R=\dfrac{\left(\dfrac{5}{3}\right)^3}{\left|\dfrac{8}{9}\right|}}

\implies\mathsf{R=\dfrac{\dfrac{125}{27}}{\dfrac{8}{9}}}

\implies\mathsf{R=\dfrac{125}{27}{\times}\dfrac{9}{8}}

\implies\mathsf{R=\dfrac{125}{3}{\times}\dfrac{1}{8}}

\implies\boxed{\mathsf{R=\dfrac{125}{24}}}

\textbf{Answer:}

\mathsf{Radius\;of\;curvature\;of\;the\;given\;curve\;at\;(3,4)\;is\;\dfrac{125}{24}}}

Similar questions