Math, asked by rehanhkhan2000, 4 months ago

find the radius of curvature of the curve y=x³at(1,1)​

Answers

Answered by mansi5555
0

Answer:

Sorry dear my maths is too weak I am really sorry

Answered by swethassynergy
0

The radius of curvature of the curve y=x³at(1,1)​ is \frac{5\sqrt{10} }{3}.

Step-by-step explanation:

Given:

The curve y=x^{3}.

To Find:

The radius of curvature of the curve y=x³at(1,1)​.

Solution:

As given-the curve y=x^{3}.

y=x^{3}

\frac{dy}{dx} =3x^{2}

\frac{dy}{dx}|_{(1,1)}  =3\times 1^{2}=3  

     

\frac{d^{2} y}{dx^{2} } =6x

\frac{d^{2} y}{dx^{2} }|_{(1,1)}  =6\times 1 =6

Radius\ of\ Curvature\ Z=\frac{(1+(\frac{dy}{dx} )^{2} )^{\frac{3}{2} } }{|\frac{d^{2}x }{dy^{2} } |}

                                        =\frac{(1+(3 )^{2} )^{\frac{3}{2} } }{|6 |}

                                        =\frac{(1+9 )^{\frac{3}{2} } }{|6 |}

                                        =\frac{(10 )^{\frac{3}{2} } }{|6 |}

                                        =\frac{(1000 )^{\frac{1}{2} } }{|6 |}

                                       =\frac{10\sqrt{10} }{6}

                                       =\frac{5\sqrt{10} }{3}

Thus, the radius of curvature of the curve y=x³at(1,1)​ is \frac{5\sqrt{10} }{3}.

                                         

PROJECT CODE #SPJ3

Similar questions