Math, asked by ms9342590, 10 months ago

.
Find the radius of curvature of the following : x = a sin^3theta; y = a cos^3theta​

Answers

Answered by mukulsingla
6

Answer:

r=2f

f=r/2

Step-by-step explanation:

tnxxxx hope it helps

Answered by isyllus
9

The radius of curvature is |3asinФcosФ|

Step-by-step explanation:

Given:

x=a\sin^3\theta

y=a\cos^3\theta

Curvature, K=\dfrac{\left|x'y''-y'x''\right|}{\left|\left(x'\right)^{2}+\left(y'\right)^{2}\right|^{\frac{3}{2}}}

x'=3a\sin^2\theta\cos\theta

x''=a (6\sin \theta\cdot cos^2\theta - 3 \sin^3\theta)

y'=-3a\cos^2\theta\sin\theta

y''=-3 a (\cos^3\theta - 2 \sin^2\theta \cos \theta)

Substitute into formula

K=\dfrac{\left|(3a\sin^2\theta\cos\theta)[-3 a (\cos^3\theta - 2 \sin^2\theta \cos \theta)]-[-3a\cos^2\theta\sin\theta][a (6\sin \theta\cdot cos^2\theta - 3 \sin^3\theta)]\right|}{\left|\left(3a\sin^2\theta\cos\theta\right)^{2}+\left(-3a\cos^2\theta\sin\theta\right)^{2}\right|^{\frac{3}{2}}}

K=\dfrac{1}{3a|\sin\theta\cos\theta|}

Radius of curvature is inverse of curvature.

R=\dfrac{1}{K}

R=|3a\sin\theta\cos\theta|

#Learn more:

https://brainly.com/question/10642118

Similar questions