Math, asked by rajimurugan6617, 3 months ago

find the radius of Curvature the curve x⁴+y⁴=2 at the point (1, 1)​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ radius of curvature (r) to the curve y = f(x) is,

\boxed{\bf\: r = \dfrac{ {(1 +  {y_1}^{2}) }^{ \frac{3}{2} } } { |y_2| }}

where,

\rm :\longmapsto\: y_1\:  = \dfrac{dy}{dx}

\rm :\longmapsto\: y_2\:  = \dfrac{ {d}^{2} y}{d {x}^{2} }

Given that,

\rm :\longmapsto\: {x}^{4}  +  {y}^{4}  = 2

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\: {4x}^{3} +  {4y}^{3}y_1 = 0

\rm :\longmapsto\: {4y}^{3}y_1 =  - {4x}^{3}

\rm :\implies\:y_1 =  -  \: \dfrac{ {x}^{3} }{ {y}^{3} }  -  - (1)

\rm :\implies\:(y_1)_ {(1,1)}=  -  \: \dfrac{ {1}^{3} }{ {1}^{3} }

\rm :\implies \: \boxed{\bf\: \:(y_1)_ {(1,1)}=  -  \:1}

On differentiating equation (1) w. r. t. x, we get

\rm :\longmapsto\:y_2 =  - \dfrac{ {y}^{3}\dfrac{d}{dx} {x}^{3}- {x}^{3}\dfrac{d}{dx} {y}^{3}}{ {y}^{6} }

\rm :\longmapsto\:y_2 =  -  \: \dfrac{ {y}^{3} {(3x}^{2}) -  {x}^{3}( {3y}^{2})y_1}{ {y}^{6} }

\rm :\longmapsto\:(y_2)_{(1,1)}=  -  \: \dfrac{ {1}^{3} {(3 \times (1)}^{2}) -  {1}^{3}( {3 \times 1}^{2})( - 1)}{ {1}^{6} }

\rm :\longmapsto\:(y_2)_{(1,1)}=  - (3 + 3)

\rm :\implies\:\boxed{\bf\: \:(y_2)_{(1,1)}=  - \: 6}

Now,

we know that,

Radius of curvature is given by

\rm :\longmapsto\:{\bf\: r = \dfrac{ {(1 +  {y_1}^{2}) }^{ \frac{3}{2} } } { |y_2| }}

On substituting the values, we get

\rm :\longmapsto\:{\bf\: r = \dfrac{ {(1 +  {( - 1)}^{2}) }^{ \frac{3}{2} } } { | - 6| }}

\rm :\longmapsto\:{\bf\: r = \dfrac{ {(1 + 1) }^{ \frac{3}{2} } } {6}}

\rm :\longmapsto\:{\bf\: r = \dfrac{ {(2) }^{ \frac{3}{2} } } {6}}

\rm :\longmapsto\:{\bf\: r = \dfrac{ {( {( \sqrt{2}) }^{2} ) }^{ \frac{3}{2} } } {6}}

\rm :\longmapsto\:{\bf\: r = \dfrac{2 \sqrt{2}} {6}}

\rm :\longmapsto\:{\bf\: r = \dfrac{ \sqrt{2}} {3}}

Additional Information :-

Radius of Curvature for parametric curves :-

\boxed{\bf\: r = \dfrac{ {( {x_1}^{2}  +  {y_1}^{2} )}^{ \frac{3}{2} } }{x_1y_2 - y_1x_2} }

Radius of Curvature for polar curves :-

\boxed{\bf\: r = \dfrac{ {( {r}^{2}  +  {r_1}^{2} )}^{ \frac{3}{2} } }{ {r}^{2} +  {2r_1}^{2} - r {r_2}^{2} } }

Similar questions