Math, asked by vaishnavi345, 11 months ago

FIND THE RADIUS OF SPHERE WHOSE SURFACE AREA IS 154CM Sq.​

Answers

Answered by Cynefin
2

 \huge{ \bf{ \blue{ \mid{ \underline{ \overline{ \green{work \: out...}}}}}}}

 \large{ \bold{you \: must \: know... }}\\  \boxed{ \large{ \red{surface \: area \: of \: sphere = 4\pi {r}^{2}}}}

 \large{given ....} \\  \large{ =  > 4\pi {r}^{2} = 154 \:  {cm}^{2}  } \\ \large{  =  > 4 \times  \frac{22}{7}  \times  {r}^{2}  = 154 \:  {cm}^{2}}  \\  =  >   \large{{r}^{2}  =  \frac{154 \times 7}{4 \times 22}  \: {cm}^{2}}  \\  =  >  \large{ {r}^{2}  =  \frac{49}{4}  {cm}^{2}}  \\ \large{  =  > r =  \sqrt{ \frac{49}{4} } cm }\\ \large{ \green{  =  > r =  \frac{7}{2} cm = 3.5cm}}( \blue{answer..})

 \large{ \bold{ \purple{running \: in \: a \: endless \: maze...}}} \\

⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐

Answered by Anonymous
3

⠀⠀⠀⠀\huge\underline{ \overline{ \bf{ \purple{QUESTION}}}}

FIND THE RADIUS OF SPHERE WHOSE SURFACE AREA IS 154CM Sq.

__________________________

⠀⠀⠀⠀⠀\huge\underline{ \underline{ \bf{ \blue{ \: solution \: : =  }}}}

  \large\underline{ \underline{ \green{ \bold {Given}}}} =  >

 \bf \: area \: of \: sphere = 154 {cm}^{2}

We know that,

⠀⠀{ \pink{ \boxed{ \fbox{ \bf{ \red{area \: of \: sphere = 4 \pi  {r}^{2} }}}}}}

Now,

⠀⠀⠀  \large\underline{ \underline{ \green{ \bold {</strong><strong>Acco</strong><strong>rding</strong><strong> </strong><strong>\</strong><strong>:</strong><strong>to</strong><strong> </strong><strong>\</strong><strong>:</strong><strong>question</strong><strong>}}}} =  &gt;

⠀⠀⠀ </strong><strong>\bf</strong><strong>=</strong><strong>&gt;</strong><strong>4 \pi {r}^{2}  = 154 {cm}^{2}  \\  \\  \bf</strong><strong>=</strong><strong>&gt;</strong><strong>4 \times  \frac{22}{7}  \times  {r}^{2}  = 154 \\  \\  \bf </strong><strong>=</strong><strong>&gt;</strong><strong>{r}^{2}  =  \frac{154 \times 7}{4 \times 22}  \\  \\ \bf  </strong><strong>=</strong><strong>&gt;</strong><strong>{r}^{2}  =  \sqrt{ \frac{49}{4} }  \\  \\   { \boxed{ \fbox{ \bf{\sqrt{49}  =7 \: and \:  \sqrt{4}  = 2 }}}} \\  \\   { \boxed{ \fbox{ \purple{\bf {r}=  \frac{7}{4}   \: or \:r = 3.5cm }}}}

Similar questions