Math, asked by mdtausifkhan, 11 months ago

find the radius of the base of a right circular cylinder whose height is 14cm and curved surface area is 176sq . cm.​

Answers

Answered by XsarkarsultanX
2

We know that

CSA Of cylinder = 2πrh

Now a/q,

πr^2h=176

22/7×r^2×14=176

r^2=(176×7)/(22×14)

r^2=4

r=√4=2

Radius = 2cm


XsarkarsultanX: Plz Mark it as branliest
Answered by BrainlyConqueror0901
3

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Radius\:of\:base=2\:cm}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\  :  \implies  \text{C.S.A\:of\:cylinder= 176 \: cm}^{2} \\  \\   : \implies  \text{Height(h) = 14 \: cm}  \\  \\  \red{ \underline \bold{To \: Find : }} \\ : \implies   \text{Radius\: of \: base= ? }

• According to given question :

\bold{As \: we \: know \: that} \\   : \implies  \text{C.S.A\: of \: cylinder} =2\pi rh \\  \\ : \implies  176=2  \times \frac{ 22}{7}  \times r\times 14 \\  \\ : \implies  1232 =616 \times r  \\  \\ \green{ : \implies\text{ r=2\:cm}}\\  \\  \bold{Formula\:related\:to\:the\:topic} \\   \circ\: \text{T.S.A\: of \: cylinder} =2\pi r(h + r)\\\\ \circ\: \text{Volume\: of \: cylinder} =\pi r^{2}h

Similar questions