Math, asked by ghanuma2004, 8 months ago

find the radius of the circle 45x2+45y2-60+36y+19=0

Answers

Answered by BrainlyPopularman
39

CORRECT QUESTION :–

• Find the radius of the circle 45x² + 45y² - 60x + 36y + 19 = 0.

ANSWER :–

GIVEN :–

• Equation of circle –

 \\ \implies\bf 45x^{2}  + 45y^{2}  - 60x + 36y + 19 = 0 \\

TO FIND :–

• Radius of circle = ?

SOLUTION :–

 \\ \implies\bf 45x^{2}  + 45y^{2}  - 60x + 36y + 19 = 0 \\

• We know that standard equation of circle is –

  \\ \implies\bf x^{2} + y^{2} + 2gx + 2fy +c= 0 \\

• And radius –

 \\ \large\implies\bf r =  \sqrt{ {g}^{2} +  {f}^{2} - c} \\

• So that –

 \\ \implies\bf 45x^{2}  + 45y^{2}  - 60x + 36y + 19 = 0 \\

• We should write this as –

 \\ \implies\bf x^{2}+y^{2}  -  \dfrac{60}{45}x +  \dfrac{36}{45}y + \dfrac{19}{45}= 0 \\

• Now compare –

 \\ \implies\bf g =  - \dfrac{30}{45} =  - \dfrac{2}{3}\\

 \\ \implies\bf f= \dfrac{18}{45} =  \dfrac{2}{5}\\

 \\ \implies\bf c= \dfrac{19}{45}\\

• Now put the values –

 \\ \large\implies\bf r =  \sqrt{ { \bigg(- \dfrac{2}{3} \bigg)}^{2} + {\bigg(\dfrac{2}{5} \bigg)}^{2}-\dfrac{19}{45}} \\

 \\ \large\implies\bf r =  \sqrt{ { \bigg(\dfrac{4}{9} \bigg)}+ {\bigg(\dfrac{4}{25} \bigg)}-\dfrac{19}{45}} \\

 \\ \large\implies\bf r =  \sqrt{ { 4\bigg(\dfrac{1}{9} + \dfrac{1}{25} \bigg)}-\dfrac{19}{45}} \\

 \\ \large\implies\bf r =  \sqrt{ { 4\bigg( \dfrac{25 +9}{225}  \bigg)}-\dfrac{19}{45}} \\

 \\ \large\implies\bf r =  \sqrt{ { 4\bigg( \dfrac{34}{225}  \bigg)}-\dfrac{19}{45}} \\

 \\ \large\implies\bf r =  \sqrt{ { \dfrac{136}{225}}-\dfrac{19}{45}} \\

 \\ \large\implies\bf r =  \sqrt{ {  \dfrac{6120 - 4275}{10125}}}\\

 \\ \large\implies\bf r =  \sqrt{ {\dfrac{1845}{10125}}}\\

 \\ \large\implies\bf r =  \sqrt{0.18}\\

 \\ \large\implies{ \boxed{\bf r = 0.42}}\\

Similar questions