Math, asked by jyothiuthappa14, 16 days ago

find the radius of the circle if the circumference of the circle is equal to the perimeter of the square which is equal to 154 cm​ step by step​

Answers

Answered by sethrollins13
29

Given :

  • The Circumference of the circle is equal to the perimeter of the square which is equal to 154 cm .

To Find :

  • Radius of Circle .

Solution :

As Given that the Circumference of the circle is equal to the perimeter of the Square . So ,

Using Formula :

\longmapsto\tt\boxed{Circumference\:of\:Circle=2\pi{r}}

Putting Values :

\longmapsto\tt{154=2\times\dfrac{22}{7}\times{r}}

\longmapsto\tt{154\times{7}=44\:r}

\longmapsto\tt{1078=44\:r}

\longmapsto\tt{r=\cancel\dfrac{1078}{44}}

\longmapsto\tt\bf{r=24.5\:cm}

So , The Radius of Circle is 24.5 cm .

Answered by Anonymous
36

Given :

  • Circumference of Circle = 154 cm

 \\ \\

To Find :

  • Radius of Circle = ?

 \\ \qquad{\rule{200pt}{2pt}}

SolutioN :

 \dag Formula Used :

  •  {\underline{\boxed{\pmb{\sf{ Circumference = 2 \pi r }}}}}

 \\

Where :

  •  \sf{ \pi = \dfrac{22}{7} }

  • r = Radius

 \\ \\

 \dag Calculating the Radius :

 {\longmapsto{\qquad{\sf{ Circumference = 2 \pi r }}}} \\ \\ \\ \ {\longmapsto{\qquad{\sf{ 154 = 2 \times \dfrac{22}{7} \times r }}}} \\ \\ \\ \ {\longmapsto{\qquad{\sf{ 154 \times 7 = 2 \times 22 \times r }}}} \\ \\ \\ \ {\longmapsto{\qquad{\sf{ 1078 = 2 \times 22 \times r }}}} \\ \\ \\ \ {\longmapsto{\qquad{\sf{ 1078 = 44 \times r }}}} \\ \\ \\ \ {\longmapsto{\qquad{\sf{ \dfrac{1078}{44} = r }}}} \\ \\ \\ \ {\longmapsto{\qquad{\sf{ \cancel\dfrac{1078}{44} = r }}}} \\ \\ \\ \ {\longmapsto \; \; {\qquad {\pmb{\underline{\boxed{\red{\sf{ Radius = 24.5 \; cm }}}}}}}}

 \\ \\

 \therefore \; Radius of the Circle is 24.5 cm .

 \\ \qquad{\rule{200pt}{2pt}}

Similar questions