Math, asked by ayushkashyap67, 1 year ago

find the radius of the circle whose area is equal to the sum of the areas of three circle with radii 3 cm 4 cm and 12 CM

Answers

Answered by Anu726
14
hi

i have attached your answer

hope it helps...
Attachments:

ayushkashyap67: Thanks didi
Anu726: welcome ! : )
Answered by silentlover45
2

 Given:-

  •  \: \: Radius \: \: circle:- \: \: 3 \: cm, \: \: 4 \: cm, \: \: and \: \: 12 \: cm.

  •  Area \: \: of \: \: bigger \: \: circle \: \: = \: \: sum \: \: area \: \: of \: \: circle \: \: having \: \: radiii \: \: 3 \: cm, \: \: 4 \: cm, \: \: and \: \: 12 \: cm.

 To \: \: Find:-

  •  Radius \: \: of \: \: bigger \: \: circle.

 Solutions:-

  •  Given \: \: radius \: \: of \: \: different \: \: circle \: \: = \: \: 3\: cm, \: \: 4 \: cm, \: \: and \: \: 12 \: cm

 Area \: \: of \: \: circle \: \: = \: \: {π}{r}^{2}

 Area \: \: of \: \: 1st \: \: circle \: \: having \: \: Radius \: \: 3 \: cm:-

⇢ Area \: \: of \: \: 1st \: \: circle \: \: \frac{22}{7} \: × \: {3}^{2}

⇢ Area \: \: of \: \: 1st \: \: circle \: \: \frac{22}{7} \: × \: {9}

⇢ Area \: \: of \: \: 1st \: \: circle \: \: \frac{198}{7} \: {cm}^{2}

 Area \: \: of \: \: 2nd \: \: circle \: \: having \: \: Radius \: \: 4 \: cm:-

⇢ Area \: \: of \: \: 2nd \: \: circle \: \: \frac{22}{7} \: × \: {4}^{2}

⇢ Area \: \: of \: \: 1st \: \: circle \: \: \frac{22}{7} \: × \: {16}

⇢ Area \: \: of \: \: 1st \: \: circle \: \: \frac{352}{7} \: {cm}^{2}

 Area \: \: of \: \: 3rd \: \: circle \: \: having \: \: Radius \: \: 12 \: cm:-

⇢ Area \: \: of \: \: 1st \: \: circle \: \: \frac{22}{7} \: × \: {12}^{2}

⇢ Area \: \: of \: \: 1st \: \: circle \: \: \frac{22}{7} \: × \: {144}

⇢ Area \: \: of \: \: 1st \: \: circle \: \: \frac{3168}{7} \: {cm}^{2}

 Now,

 \: \: \: \: \: it \: \: given \: \: that \: \: the \: \: area \: \: of \: \: bigger \: \: circle \: \: is \: \: equal \: \: to \: \: the \: \: sum \: \: of \: \: area \: \: of \: \: circle \: \: having \: \: Radius \: \: 3 \: cm, \: \: 4 \: cm, \: \: and \: \: 12 \: cm.

 so,

 \: \: \: \: \: Area \: \: bigger \: \: circle \: \: = \: \: area \: \: of \: \: 1st \: \: circle \: \: + \: \: area \: \: of \: \: 2nd \: \: circle \: \: + \: \: area \: \: of \: \: 3rd \: \: circle.

⇢ Area \: \: bigger \: \: circle \: \: = \: \: \frac{198}{7} \: + \: \frac{352}{7} \: + \: \frac{3168}{7}

⇢ Area \: \: bigger \: \: circle \: \: = \: \: \frac{{198} \: + \: {352} \: + \: {3168}}{7}

⇢ Area \: \: bigger \: \: circle \: \: = \: \: \frac{3718}{7} \: {cm}^{2}

⇢ Area \: \: bigger \: \: circle \: \: = \: \: {π}{r}^{2}

⇢ \frac{3718}{7} \: \: = \: \: {π}{r}^{2}

⇢ \frac{3718}{7} \: \: = \: \: \frac{22}{7} \: × \: {r}^{2}

⇢ \frac{3718}{7} \: × \: \: \frac{7}{22} \: \: = \: \: {r}^{2}

⇢ \frac{3718}{22} \: \: = \: \: {r}^{2}

⇢ {169} \: \: = \: \: {r}^{2}

⇢ {r} \: \: = \: \: \sqrt{169}

⇢ {r} \: \: = \: \: {13} \: cm.

So,

 \: \: \: \: \: the \: \: radius \: \: of \: \: the \: \: circle \: \: is \: \: 13 \: cm, \: \: whose \: \: are \: \: is \: \: equal \: \: to \: \: the \: \: sum \: \: of \: \: the \: \: area \: \: of \: \: three \: \: circle \: \: with \: \: 3 \: cm, \: \: 4 \: cm, \: \: and \: \: 12 \: cm.

______________________________________

Similar questions
Math, 1 year ago