Find the radius of the circle with chord and angle made by this chord is 60 degree and length of one chord is 8cm
Answers
Answered by
0
Step-by-step explanation:
Given,
A chord of length 8 cm subtends an angle of 60° at the centre.
Now,
AB = A'B (All the radii of the circle are equal)
Also,
∠BA'A = ∠BAA' (Angles opp. to equal sides are equal)
Now, by angle sum property, we get
∠BA’A + ∠BAA’ + ∠ABA’ = 180°
or, ∠BA’A + ∠BA’A + 60° = 180° (∠BA’A = ∠BAA’)
or, 2∠BA’A = 180° — 60°
or, 2∠BA’A = 120°
or, ∠BA’A = 120°/2
or, ∠BA’A = ∠BAA’ = 60° (∠BA’A = ∠BAA’)
Now,
ΔABA' is equilateral (All the angles are 60°)
So, AB = A'B = AA' = 8 cm
Hence, Radius = 8 cm.
Attachments:
Similar questions