Math, asked by yogeshwarisudh, 1 year ago

find the radius of the circle (x cos alpha+y sin alpha -a)^2+(x sin alpha-y cos alpha-b)^2=k^2 and if alpha varies ,find the locus of its centre.

Answers

Answered by madeducators2
4

Given:

Equation of circle,( xcos\alpha +ysin\alpha-a)^{2} +(xsin\alpha -ycos\alpha -b)^{2}=k^{2}

To find:

We have to find the radius of the circle and locus of its centre

Solution:

Equation of circle,

(x^{2}cos^{2}\alpha +y^{2}sin^{2}\alpha +a^{2}+2xysin\alpha cos\alpha -2aysin\alpha -2axcos\alpha ) +(x^{2}sin^{2}\alpha +y^{2}cos^{2}\alpha +b^{2}-2xysin\alpha cos\alpha +2bycos\alpha -2bxsin\alpha )=k^{2}

x^{2} (sin^{2}\alpha +cos^{2} \alpha)+y^{2}(sin^{2}\alpha +cos^{2} \alpha)+x(-2acos\alpha -2bsin\alpha )+y(-2asin\alpha +2bcos\alpha )+a^{2}+b^{2}=k^{2}

x^{2} +y^{2}+2x(-acos\alpha -bsin\alpha )+2y(-asin\alpha +bcos\alpha )+a^{2} +b^{2} -k^{2} =0

comparing above equation with general equation of circle x^{2} +y^{2}+2gx+2fy+c=0  we get,

g=-acos\alpha -bsin\alpha

f=-asin\alpha +bcos\alpha

c=a^{2} +b^{2} -k^{2}

Now radius of circle=\sqrt{g^{2} +f^{2}-c }

                                = \sqrt{(-acos\alpha -bsin\alpha )^{2}+(-asin\alpha +bcos\alpha )^{2} -a^{2} -b^{2} +k^{2}  }

                                = \sqrt{k^{2} }

                                = k

∴The radius of the given circle = k

Locus of centre,

\sqrt{g^{2} +f^{2}-c } =  k

On squaring both sides we get,

g^{2} +f^{2} -c=k^{2}

g^{2} +f^{2} -(a^{2} +b^{2} -k^{2} )=k^{2}

g^{2} +f^{2} -a^{2} -b^{2} +k^{2} =k^{2}

g^{2} +f^{2}= a^{2} +b^{2} This is the required locus centre of given circle

where centre= (-g,-f)

Answered by Geniusstark
0

Answer:

Mark as the brainless

thank you

Attachments:
Similar questions