Math, asked by sanjeev660, 11 months ago

find the radius of the circular cylinder whose curved surface area is 352 and height is 14cm​

Answers

Answered by MяMαgıcıαη
2

Answer:

given ,

height = 14 cm

CSA = 352 cm²

=> 2πrh = 352

=> π*r*14 = 352/2 = 176

=> (22/7) * r * 14 = 176

=> 22*2r = 176

=> r = 176/44

=> r = 4 cm

so, radius = 4cm

Answered by BrainlyConqueror0901
2

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Radius\:of\:base=4\:cm}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\ : \implies \text{C.S.A\:of\:cylinder= 352\: cm}^{2} \\ \\ : \implies \text{Height(h) = 14\: cm} \\ \\ \red{ \underline \bold{To \: Find : }} \\  : \implies \text{Radius\: of \: base= ? }

• According to given question :

  \bold{As \: we \: know \: that} \\ : \implies \text{C.S.A\: of \: cylinder} =2\pi rh \\ \\ : \implies 352=2 \times \frac{ 22}{7} \times r \times 14\\ \\ : \implies 2464 =616\times r \\ \\ \green{ : \implies \text{Radius\: of \: base} =4\: {cm}} \\ \\ \bold{Some \:formula's\: related \: to\:this\:topic} \\ \pink{\circ\: \text{T.S.A\: of \: cylinder} =2\pi r(h + r)} \\ \\ \pink{\circ\:\text{Volume\: of \: cylinder} = \pi r^{2}h}

Similar questions