Biology, asked by kolloop00, 1 month ago

find the radius of the curvature at


Attachments:

Answers

Answered by Anonymous
0

Answer:

3a3a =6a hope u understand

Answered by shadowsabers03
1

The radius of curvature is defined as,

\displaystyle\small\text{$\longrightarrow R=\dfrac{ds}{d\alpha}$}

where,

  • \displaystyle\small\text{$ds=\sqrt{(dx)^2+(dy)^2}$}

is an infinitesimal segment along the curve and,

  • \displaystyle\small\text{$\alpha=\tan^{-1}\left(\dfrac{dy}{dx}\right)$}

is the angle made by the segment with the horizontal.

Here the equation of the curve is,

\displaystyle\small\text{$\longrightarrow x^3+y^3=3axy$}

Differentiating,

\displaystyle\small\text{$\longrightarrow 3x^2dx+3y^2dy=3a\left(y\,dx+x\,dy\right)$}

\displaystyle\small\text{$\longrightarrow\dfrac{dy}{dx}=\dfrac{ay-x^2}{y^2-ax}\quad\quad\dots(1)$}

At \displaystyle\small\text{$(x,\ y)=\left(\dfrac{3a}{2},\ \dfrac{3a}{2}\right),$}

\displaystyle\small\text{$\longrightarrow\dfrac{dy}{dx}=-1\quad\quad\dots(2)$}

Differentiating (1) wrt x,

\displaystyle\small\text{$\longrightarrow\dfrac{d^2y}{dx^2}=\dfrac{\left(a\,\dfrac{dy}{dx}-2x\right)\left(y^2-ax\right)-\left(ay-x^2\right)\left(2y\,\dfrac{dy}{dx}-a\right)}{\left(y^2-ax\right)^2}$}

At \displaystyle\small\text{$(x,\ y)=\left(\dfrac{3a}{2},\ \dfrac{3a}{2}\right),$}

\displaystyle\small\text{$\longrightarrow\dfrac{d^2y}{dx^2}=-\dfrac{32}{3a}\quad\quad\dots(3)$}

Then,

\displaystyle\small\text{$\longrightarrow ds=\sqrt{(dx)^2+(dy)^2}$}

From (2),

\displaystyle\small\text{$\longrightarrow ds=\sqrt{(dx)^2+(-dx)^2}$}

\displaystyle\small\text{$\longrightarrow ds=\sqrt{2}\ dx$}

And,

\displaystyle\small\text{$\longrightarrow\alpha=\tan^{-1}\left(\dfrac{dy}{dx}\right)$}

Differentiating,

\displaystyle\small\text{$\longrightarrow d\alpha=\dfrac{1}{1+\left(\dfrac{dy}{dx}\right)^2}\cdot\left(\dfrac{d^2y}{dx^2}\right)dx$}

From (2) and (3),

\displaystyle\small\text{$\longrightarrow d\alpha=\dfrac{1}{1+\left(-1\right)^2}\cdot\left(-\dfrac{32}{3a}\right)dx$}

\displaystyle\small\text{$\longrightarrow d\alpha=-\dfrac{16}{3a}\,dx$}

Then, radius of curvature,

\displaystyle\small\text{$\longrightarrow R=\dfrac{ds}{d\alpha}$}

\displaystyle\small\text{$\longrightarrow R=\dfrac{\sqrt2\ dx}{\left(-\dfrac{16}{3a}\,dx\right)}$}

\displaystyle\small\text{$\longrightarrow\underline{\underline{R=-\dfrac{3a\sqrt2}{16}}}$}

Similar questions