Math, asked by shahid1899, 1 year ago

find the radius of the cylinder whose volume is 1650 cm and height is 21cm.


elias13: r≈0.064cm

Answers

Answered by anjali3927
0
volume of cylinder= pie r^2l
1650 = 22/7 × r^2 ×21
1650 = 22×21/7 r^2
1650= 462/7 r ^2
1650 ×7/462 = r^2
25 = r^2
5 = r

HOPE IT WILL HELP YOU ✌️✌️✌️✌️
Answered by BrainlyConqueror0901
4

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Radius\:of\:cylinder=5\:cm}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\ : \implies \text{Height(h) = 21\: cm} \\ \\ : \implies \text{Volume\:of\:cylinder=1650\: cm}^{3}\\ \\ \red{ \underline \bold{To \: Find : }}\\ : \implies \text{Radius\: of \: cylinder(r) = ? }

• According to given question :

\bold{As \: we \: know \: that} \\ :\implies \text{Volume\: of \: cylinder} =\pi r^{2}h \\ \\ : \implies 1650= \frac{22}{7} \times r^{2}\times 21 \\ \\:\implies1650\times7= 462\times r^{2}\\ \\ :\implies r^{2}=\frac{\cancel{11550}}{\cancel{462}}=25\\\\ \green{:\implies\text{Radius\: of \: cylinder=5\: cm}}\\\\ \purple{\text{Some\:formula\:related\:to\:this\:topic}}\\ \pink{\circ\:\text{T.S.A\:of\:cylinder}=2\pi r(h+r)}\\\\ \pink{\circ\:\text{C.S.A\:of\:cylinder}=2\pi rh}

Similar questions