Math, asked by lavisoni82, 4 months ago

find the radius of the right circular cylinder whose height is 100 m and volume is 554400 cu. m.​

Answers

Answered by Anonymous
19

 \sf{\underline{\underline{ \purple{ \large{Given:}}}}}

✰ Height = 100 m

✰ Volume of a right circular cylinder = 554400 m³

 \\ \\ \\  \sf{\underline{\underline{ \purple{ \large{To \: Find:}}}}}

✠ Radius of the cylinder

 \\ \\ \\ \sf{\underline{\underline{ \purple{ \large{Solution:}}}}}

Using formula,

Volume of the cylinder = \sf{\pi r^2 h}

Where,

Take \pi = 22/7

r = radius

h = height

Substituting the values,

⟶ 554400 = 22/7 × r² × 100

⟶ 554400 × 7/22 × 1/00 = r²

⟶ 5544 × 7/22 = r²

⟶ 1764 = r²

⟶ 42 cm = r

 \\ \\ \sf {\large {Therefore, \: radius = {\green{ \underline{ \boxed{ \sf{42 \: cm}}}}}}} \\ \\ \\

Additional points:

  • Area of circle = πr²

  • Volume of cylinder = πr²h

  • Total surface area of cylinder = 2πrh + 2πr²

  • Total surface area of cone = πrl + πr²h

  • Curved surface area of cone = πrl

  • Volume of cone = 1/3 πr²h

▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Answered by thebrainlykapil
60

Question :-

  • Find the radius of the right circular cylinder whose height is 100 m and volume is 554400 m³.

 \\  \\

Given :-

  • Volume of Cylinder = 554400m³
  • Height of the Cylinder = 100m

 \\  \\

To Find :-

  • What is the Radius of the Cylinder ?

 \\  \\

Solution :-

 \\

\longmapsto{\boxed{\sf{Volume\:of\: cylinder=\pi\:r^{2}h}}}

{:} \longrightarrow \sf{\sf{ \: 554400 \: = \:  \dfrac{22}{7}  \:  \times  \:r^{2} \:  \times  \: 100 }}\\

{:} \longrightarrow \sf{\sf{ \:  \dfrac{5544 \cancel{00}}{1\cancel{00}}  \: = \:  \dfrac{22}{7}  \:  \times  \:r^{2} \: }}\\

{:} \longrightarrow \sf{\sf{ \:  5544   \: = \:  \dfrac{22}{7}  \:  \times  \:r^{2} \: }}\\

{:} \longrightarrow \sf{\sf{ \:   \dfrac{5544 \:  \times  \: 7}{22}   \: = \: l  \:r^{2} \: }}\\

{:} \longrightarrow \sf{\sf{ \:   \dfrac{38808}{22}   \: = \:    \:r^{2} \: }}\\

{:} \longrightarrow \sf{\sf{ \:   1764 \: = \:    \:r^{2} \: }}\\

{:} \longrightarrow \sf{\sf{ \:    \sqrt{1764}\: = \:    \:r  }}\\

{:} \longrightarrow \sf{\bf{ \:  42 \: = \:    \:Radius  }}\\

━━━━━━━━━━━━━

 \\

Verification :-

\longmapsto \sf{\sf{ \: Volume\:of\: cylinder=\pi\:r^{2}h }}\\

\longmapsto \sf{\sf{ \: 554400 \: = \:  \dfrac{22}{7}  \:  \times  \: (42)^{2} \:  \times  \: 100 }}\\

\longmapsto \sf{\sf{ \: 554400 \: = \:  \dfrac{22}{7}  \:  \times  \: 42 \:  \times  \: 42 \:  \times  \: 100 }}\\

\longmapsto \sf{\sf{ \: 554400 \: = \:  \dfrac{22}{\cancel7}  \:  \times  \: \cancel{42} \:  \times  \: 42 \:  \times  \: 100 }}\\

\longmapsto \sf{\sf{ \: 554400 \: = \: 22  \:  \times  \: 6 \:  \times  \: 42 \:  \times  \: 100 }}\\

\longmapsto \sf{\sf{ \: 554400 \: = \: 132 \:  \times  \: 4200 }}\\

\longmapsto \sf{\sf{ \: 554400 \: = \: 554400 }}\\

━━━━━━━━━━━━━

 \\

So, the Radius of the Cylinder is 42cm

━━━━━━━━━━━━━

Additional Info :-

  • Volume of cylinder = πr²h
  • T.S.A of cylinder = 2πrh + 2πr²
  • L.S.A of Cylinder = 2π r h

━━━━━━━━━━━━━


Anonymous: Great :)
Similar questions