Math, asked by KaranSharma05, 7 months ago

find the
radius of the spher whose
surface area is 154cm2 .

Answers

Answered by Anonymous
2

Step-by-step explanation:

Let x be radius

⇒Surface Area =154cm^2

∴4πx^2=154

⇒x^2 = 4×22/154×7

= 49/4

⇒x= 49/4

x=3.5cm

hope this will help you

Answered by SarcasticL0ve
5

GivEn:

  • Total surface area of sphere is = 154 cm².

⠀⠀

To find:

  • Radius of Sphere?

⠀⠀

Solution:

We know that,

⠀⠀

\star\;{\boxed{\sf{\purple{TSA_{\;(sphere)} = 4 \pi r^2}}}}\\ \\

:\implies\sf 4 \times \dfrac{22}{7} \times r^2 = 154\\ \\

:\implies\sf r^2 = \cancel{154} \times \dfrac{1}{4} \times \dfrac{7}{ \cancel{22}}\\ \\

:\implies\sf r^2 = 7 \times \dfrac{1}{4} \times 7\\ \\

:\implies\sf r^2 = \dfrac{49}{4}\\ \\

:\implies\sf r^2 = \dfrac{7}{2}\\ \\

:\implies{\boxed{\frak{\pink{r = 3.5\;cm}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Hence,\;the\;radius\;of\;sphere\;is\; \bf{3.5\;cm}.}}}

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\qquad\qquad\qquad\boxed{\underline{\underline{\bigstar \: \bf\:More\:to\:know\:\bigstar}}}\\ \\

  • Volume of sphere = \sf \dfrac{4}{3} \pi r^3

⠀⠀

  • Volume of hemisphere = \sf \dfrac{2}{3} \pi r^3

⠀⠀

  • Curved Surface Area of hemisphere = \sf 2 \pi r^2

⠀⠀

  • Total surface area of hemisphere = \sf 3 \pi r^2
Similar questions