Math, asked by Saniakook, 4 months ago

Find the radius of the sphere if the surface area of the sphere is 616 cm?​

Answers

Answered by Mɪʀᴀᴄʟᴇʀʙ
36

\LARGE{\bf{\underline{\underline{Solution:-}}}}

______________________________________

Given:-

Surface area of the sphere = 616 cm

To Find:-

• Radius of the sphere

\boxed{\sf{\orange{S.A. = 4\pi r^{2}}}}

As we know surface area

So,

616 = 4 × \dfrac{22}{7} × r²

\cancel \dfrac{616}{4} = \dfrac{22}{7} × r²

⟹ 154 = \dfrac{22}{7} × r²

⟹ 154 × 7 = 22 × r²

⟹ 1078 = 22 × r²

\cancel \dfrac{1078}{22} = r²

⟹ 49 = r²

⟹ r = √49

⟹ r = 7

Therefore, the radius of the sphere = 7 cm

______________________________________

Answered by Itsvaishu366
1

Answer:

Given:-

Surface area of the sphere = 616 cm

To Find:-

• Radius of the sphere

\boxed{\sf{\orange{S.A. = 4\pi r^{2}}}}S.A.=4πr2

As we know surface area

So,

616 = 4 × \dfrac{22}{7}722 × r²

⟹ \cancel \dfrac{616}{4}4616 = \dfrac{22}{7}722 × r²

⟹ 154 = \dfrac{22}{7}722 × r²

⟹ 154 × 7 = 22 × r²

⟹ 1078 = 22 × r²

⟹\cancel \dfrac{1078}{22}221078 = r²

⟹ 49 = r²

⟹ r = √49

⟹ r = 7

Therefore, the radius of the sphere = 7 cm

Similar questions