Math, asked by hyunjin01, 7 hours ago

find the range of 1/5- cos 3x

IF NOT RIGHT ANSWER U WILL BE REPORTED ​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\dfrac{1}{5 - cos3x}

Let assume that

\rm :\longmapsto\:f(x) = \dfrac{1}{5 - cos3x}

To find the range, Let first recall the definition of range.

Range of a function f(x) is defined as set of result of those values which are assumed by x.

Now, we know

\rm :\longmapsto\: - 1  \leqslant cos3x \leqslant 1

On multiply each term by - 1, we get

\rm :\longmapsto\:1 \geqslant  - cos3x \geqslant  - 1

can be rewritten as

\rm :\longmapsto\: - 1  \leqslant  - cos3x \leqslant 1

On adding 5 in each term, we get

\rm :\longmapsto\:5 - 1 \leqslant 5 - cos3x \leqslant 5 + 1

\rm :\longmapsto\:4 \leqslant 5 - cos3x \leqslant 6

\rm :\longmapsto\:\dfrac{1}{6}  \leqslant \dfrac{1}{5 - cos3x}  \leqslant \dfrac{1}{4}

\rm :\longmapsto\:\dfrac{1}{6}  \leqslant f(x)  \leqslant \dfrac{1}{4}

\bf\implies \:f(x) \:  \in \: \bigg[\dfrac{1}{6}, \: \dfrac{1}{4}  \bigg]

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Learn More :-

Domain of a function f(x) is defined as set of those values of x for which function is well defined or for which function assumes real values.

Similar questions