Math, asked by ayush616444, 7 months ago

find the range of 1 upon (cos 2x+2sin2x​)

Answers

Answered by codiepienagoya
1

Given:

\bold{\frac{1}{(\cos 2x + 2\sin 2x)}}

To prove:

Find range.

Solution:

\Rightarrow \frac{1}{(\cos 2x + 2\sin 2x)}

Let the function is f(x):

f(x)= {(\cos 2x + 2 \sin 2x)}

derivative the above method:

f'(x)= {(- 2 \sin(2x) + 2 \times 2  \cos (2x))}\\\\f'(x)= {(- 2 \sin(2x) +  4\cos (2x))}\\

let the method is equal to 0:

0 = {- 2 \sin(2x) + 4 \cos (2x))}\\\\ \sin(2x) = 2 cos (2x) \\\\\tan 2x = 2\\\\x= \frac{1}{2} \tan^{-1} (2) \\\\

putting the value of x is above method:

\cos^{-1} \theta = (\frac{B}{H}) = \frac{1}{\sqrt{5}} \\\\\sin^{-1}  \theta = (\frac{P}{H}) = \frac{2}{\sqrt{5}} \\\\

f(\frac{1}{2} \tan^{-1}) = cos(\tan^{-1} (2)) + 2 \sin (\tan^{-1} (2))

                 = cos(\tan^{-1} (2)) + 2 \sin (\tan^{-1} (2)) \\\\= cos(\cos^{-1} (\frac{1}{\sqrt{5}})) + 2 \sin (\sin^{-1} \frac{2}{\sqrt{5}}) \\\\= \frac{1}{\sqrt{5}} + \frac{4}{\sqrt{5}} \\\\= \frac{1+4}{\sqrt{5}} \\\\= \frac{5}{\sqrt{5}} \\\\= {\sqrt{5}} \\\\

Range:

- \sqrt{5} \leq f(x) \leq \sqrt{5}\\\\

The equation is given in the form of 1 upon that's why value is:

\bold { \Rightarrow  - \frac{1}{\sqrt{5}} \geq  \frac{1}{f(x)} \geq  \frac{1}{\sqrt{5}}}

let the method is g(x): g(x) \geq \frac{1}{\sqrt{5}} , \ \ \ \ g(x) \leq - \frac{1}{\sqrt{5}}

The range is:  \bold{g(x) \geq \frac{1}{\sqrt{5}} , \ \ \ \ g(x) \leq - \frac{1}{\sqrt{5}}}

Attachments:
Similar questions