Math, asked by PragyaTbia, 1 year ago

Find the range of 7 cos x - 24 sin x + 5

Answers

Answered by abhi178
12
we know, if any function , f(x)=\pm asinx\pm bcosx is given ,
then, range of function will be [-\sqrt{a^2+b^2},\sqrt{a^2+b^2}]


here, function is 7cosx - 24sinx + 5

first of all, find range of 7cosx - 24 sinx

a = -24 and b = 7

then, range of (7cosx - 24sinx) is [-\sqrt{(-24)^2+7^2},\sqrt{24^2+7^2}] or, [-25,25]

e.g., - 25 ≤ 7cosx - 24 sinx ≤ 25

or, -25 + 5 ≤ 7cosx - 24sinx + 5 ≤ 25 + 5

or, - 20 ≤ 7cosx - 24sinx + 5 ≤ 30

hence, range of (7cosx - 24sinx + 5) is [ -20, 30]
Similar questions