Math, asked by unnabhrathod26, 9 months ago

Find the range of f(x) = 1/2|cosx|-3

Answers

Answered by saounksh
1

Answer:

Hence range of f(x) is [-3, - 5/2]

Step-by-step explanation:

Here

f(x) =  \frac{1}{2} | \cos(x) |  - 3

We know that

 - 1 \leqslant  \cos(x)  \leqslant 1

or \: 0 \leqslant  | \cos(x) |  \leqslant 1

or \: 0 \leqslant  \frac{1}{2}  | \cos(x) |  \leqslant  \frac{1}{2}

or \:  - 3 \leqslant  \frac{1}{2}  | \cos(x) |  - 3 \leqslant  \frac{1}{2 }  - 3

or \:  - 3 \leqslant f(x) \leqslant  -  \frac{5}{2}

Hence range of f(x) is [-3, - 5/2]

Similar questions