Math, asked by papafairy143, 6 days ago

Find the range of f(x) =

 {cos}^{2} x +  {sin}^{4} x

for every x is a real numbet​

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Given function is

\rm \:f(x) =   {cos}^{2}x +  {sin}^{4}x \\

can be rewritten as

\rm \:f(x) =   {cos}^{2}x +  {sin}^{2}x \times  {sin}^{2}x  \\

We know,

\boxed{\sf{  \:\rm \:  {sin}^{2}x +  {cos}^{2}x = 1 \: }} \\

So, using this identity, we get

\rm \: f(x) =  {cos}^{2}x +  {sin}^{2}x(1 -  {cos}^{2}x)   \\

\rm \: f(x) =  {cos}^{2}x +  {sin}^{2}x -   {sin}^{2}x {cos}^{2}x   \\

\rm \: f(x) =  1 -   {sin}^{2}x {cos}^{2}x   \\

\rm \: f(x) =  1 -   {(sinxcosx)}^{2}  \\

\rm \: f(x) =  1 -  {\bigg(\dfrac{2sinxcosx}{2} \bigg)}^{2}   \\

\rm \: f(x) =  1 -  {\bigg(\dfrac{sin2x}{2} \bigg)}^{2}   \\

\rm \: f(x) =  1 -   \frac{1}{4}  {sin}^{2} 2x   \\

Now, we know that

\rm \:  - 1 \leqslant sin2x \leqslant 1 \\

\rm \:  0 \leqslant  {sin}^{2}2x  \leqslant 1 \\

\rm \:  0 \leqslant   \frac{1}{4} {sin}^{2}2x  \leqslant  \frac{1}{4}  \\

\rm \:  0 \geqslant   -   \: \frac{1}{4} {sin}^{2}2x  \geqslant  -  \:  \frac{1}{4}  \\

\rm \:  -  \:  \frac{1}{4}  \leqslant  -  \frac{1}{4}  \: sin^{2} 2x \:  \leqslant 0 \\

Now, Adding 1 in each term, we get

\rm \:  1-  \:  \frac{1}{4}  \leqslant  1-  \frac{1}{4}  \: sin^{2} 2x \:  \leqslant 0 + 1 \\

\rm \:  \:  \frac{4 - 1}{4}  \leqslant   f(x) \:  \leqslant 1 \\

\rm \:  \:  \frac{3}{4}  \leqslant  f(x) \:  \leqslant 1 \\

Hence,

\rm\implies \:Range \: of \: f(x) \:  \in \: \bigg[\dfrac{3}{4}, \: 1\bigg] \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\begin{gathered}\boxed{\begin{array}{c|c} \bf Function & \bf Range \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf y = sinx & \sf   - 1 \leqslant y \leqslant 1\\ \\ \sf y = cosx & \sf  - 1 \leqslant y \leqslant 1 \\ \\ \sf y = tanx & \sf y \:  \in \: ( -  \infty , \infty )\\ \\ \sf y = cosecx & \sf y \leqslant  - 1 \:  \: or \:  \: y \geqslant 1\\ \\ \sf y = secx & \sf y \leqslant  - 1 \:  \: or \:  \: y \geqslant 1\\ \\ \sf y = cotx & \sf y \:  \in \: ( -  \infty , \infty ) \end{array}} \\ \end{gathered} \\

Similar questions